The Higgs boson: from cornerstone of the SM to a tool to search for BSM

Nicolas Morange, IJCLab

NPAC, 01/03/2023

Laboratoire de Physique des 2 Infinis

Introduction

Higgs boson discovery in 2012: more than just one more particle

A whole new sector of the SM Lagrangian to study !

- Study of EW symmetry breaking mechanism
 - Gauge couplings
 - More Higgs bosons?
 - Composite Higgs ?
- Is the Higgs we found the SM one?
 - Couplings, properties
- It couples to mass... so does it couple to BSM particles?
 - Portal to Dark Matter
 - Non-SM decays
- Higgs in decay of new particles N. Morange (IJCLab)

- 1. Higgs boson phenomenology at the LHC
- 2. Higgs production and decay measurements
- 3. Properties
- 4. Couplings
- 5. Constraints on new physics

Higgs phenomenology at the LHC

The Higgs mechanism

Z= - 4 Fre FMV +itypy + h.c. Yi Yii Yig+ L. C. + (ϕ) symmetric $M_y = M_w = M_z = 0$ V (ф) electroweak lm (φ) asymmetric extra W, Z polarisation Re (d) M_{.y}=0 M_{.w}, M,

Spontaneous Electroweak Symmetry Breaking

- Initial (high T state) symmetric
- "Mexican hat" potential for the Higgs field

 $V(\phi) = \mu^2 \phi^{\dagger} \phi + \lambda (\phi^{\dagger} \phi)^2$

• EW phase transition:

• Higgs potential takes $a \neq 0$ vev:

$$v = \frac{|\mu|}{\sqrt{\lambda}} = \frac{2M_W}{g} = 246 \text{GeV}$$

- Interaction with EW gauge bosons:
 - Masses of W, Z
 - No massless Goldstone particle
- Fermions acquire their mass incidentally

NPAC BSM Lecture 3, 01/03/2023

Higgs boson couplings

Hierarchy of fermion masses ⇔ Hierarchy of couplings to Higgs

Higgs boson decays

Significant hierarchy in Higgs boson BRs

NB: Decays to massless particles (gluons, photons) through loops

W

W

Higgs boson decays

Significant hierarchy in Higgs boson BRs

Narrow resonance at 125 GeV: width ~ 4 MeV

Higgs boson production mechanisms

4 main production modes at the LHC. Total cross-section ~ 56 pb at 13 TeV

Gluon fusion

 No particular signature

Vector boson fusion

• Two high-pT jets, large invariant mass and pseudorapidity separation

Higgsstrahlung

 Tagged by W/Z decays (mostly leptonic decays)

ttH

 Tagged by ttbar decay signatures

Higgs production cross-sections

Hierarchy mostly unchanged, except for ttH x-section (phase space)

The Higgs boson in the global electroweak fit

The SM is overconstrained from many EW precision measurements: powerful self-consistency check

- At tree-level, EW gauge sector described by G_F, α and M₇
- At higher-order important corrections from other parameters, esp. m_t and M_H

Global electroweak fit

0.0

-1.5

0.1

0.3

-0.2

-1.5

-1.0

-0.9

0.1

-2.1

-0.7

0.1

0.8

2.4

0.0

0.6

0.0

-0.7

0.5

-0.2

1.3

Measuring the Higgs at the LHC

Not all channels are born equal

Sensitivity of a measurement depends on several factors

- Number of events produced
 - Production x-section, BR
- Acceptance / selection efficiency
- S/B
 - Amount of background
 - Discrimination power (e.g narrow peak)

Discovery channels: relatively low stats, but high S/B

Higgs bosons per fb ⁻¹	^L (13 TeV)
-----------------------------------	-----------------------

	produced	selected
$H o \gamma \gamma$	130	46
$H ightarrow ZZ^*$	1400	1.5
$H ightarrow WW^*$	12000	42
H o au au	3500	17
$H ightarrow b ar{b}$	32000	66

14

N. Morange (IJCLab)

No stone left unturned

Higgs studies have come a long way since 2012: full matrix prod X decay covered

Precision measurements everywhere

Two main questions to answer

- Are the couplings as predicted by the SM ?
 - Improve analysis precision
 - Analyse more and more data
- Is the structure of the Lagrangian the SM one ?
 - Probe differential distributions to look for shape deviations
 - CP-sensitive variables
- Price to pay: analysis complexity
 - Many categories
 - Machine learning everywhere

Z= - 4 Fre FMV +iųpų +h.c. + 4: yii 4: + h. c. $+ D_{\mu}\phi l^2 - V(\phi)$

$H \rightarrow \gamma \gamma$

• Key features

- Clean signature: 2 isolated photons
- Fairly high signal yield
- S/B fairly good
- Excellent diphoton mass resolution
- Precise background estimation under signal peak from sidebands

hep-ex:1207.7214

$H \rightarrow \gamma \gamma$ back in 2012

Optimise for discovery with few years of data-taking

- Simple cut-based photon ID algorithm
 - o 74% real γγ events
- 10 analysis categories
 - 1 optimised for VBF
 - 9 to classify events based on the expected purity of real γγ events and of the expected S/B
 - Central unconverted photons being the best
- Polynomial fit to the data
 - With large systematic uncertainties
- Result
 - ATLAS: μ = 1.8 ± 0.5

$H \rightarrow \gamma \gamma$ in 2022

With \times 30 more Higgs bosons, goals are shifting

• 101 analysis categories

- Using machine learning multiclassifiers
- Classify by S/B and probe specific fiducial regions at the same time

• More elaborate analysis

- Photon ID from ML, better vertex reco
- More inclusive analysis, but using more fine-grained categories
- Better calibrations

Results

- ATLAS: $\mu = 1.04 \pm 0.10$
- Production modes cross-sections
- Differential distributions
- Constraints on new physics scenarios

STXS: Simplified Template Cross-Sections

Theory-experiment agreement for fiducial definitions of production modes

• Target all production modes

- Regardless of decay
- Evolutive definitions: "Stages" (1.2)
- Probes relevant kinematic variables
 - Relevant for theory uncertainties
 - Esp. regarding new physics searches, i.e high-Q² regions

• Main benefits

- Combinations of channels
- Future ATLAS+CMS combination
- Central calculation of theory uncertainties
- Regions can be merged when necessary
- $H \rightarrow \gamma \gamma$: 28 STXS regions measured

$H \rightarrow ZZ^* \rightarrow 4l$

The "golden channel"

• Key features

- Very high S/B
- Low event counts
- Excellent mass resolution (1-2%)
- Backgrounds easy to deal with

Analysis strategy

- 2 pairs of isolated electron/muon
- One pair at m₇
- Invariant mass as key distribution
- Fully reconstructed kinematics allows for efficient bkg reduction

Results

- Similar set of results as $H \rightarrow \gamma \gamma$
- Kinematics allow to probe spin/CP

$H \rightarrow WW^* \rightarrow lvlv$

A different trade-off

• Key features

- Good S/B
- High event yields
- Poor mass resolution (20%): neutrinos !
- Some difficult backgrounds

Analysis strategy

- 2 isolated electron/muon
- Mostly opposite-flavour
- Transverse mass as key distribution
- But DNN with full kinematic information provides large improvement

Results

- Good channel for ggF and VBF productions
- Significant impact of syst. uncertainties

$H \to \tau\tau$

Channel for the discovery of Yukawa couplings

• Key features

- Medium S/B
- Medium event yields
- Poor mass resolution
- Difficult background modelling

Analysis strategy

- 2 taus (hadronic/leptonic)
- Invariant mass as key distribution
- But NN with full kinematic information provides large improvement
- Embedding techniques to deal with Z background

Results

- Observation of Yukawa coupling in Run1 ATLAS+CMS combination
- Then in Run 2 separately

Parameter value

$H \rightarrow \mu \mu$

A bit like $H\to\gamma\gamma,$ but harder

• Key features

- Tiny S/B
- Small event yields
- Excellent mass resolution
- Simple background modelling

Analysis strategy

- 2 muons
- Invariant mass as key distribution
- Classification by production mode + use of DNN for improved sensitivity

Results

- Evidence for $H \rightarrow \mu\mu$ by CMS in Run 2 !
- $\mu = 1.2 \pm 0.4$, Z = 3.0 σ

VH, $H \rightarrow bb$

Main channel for $H \rightarrow bb$ observation

Key features

- Small S/B ~ 0.05
- Medium event yields (VH production)
- Medium mass resolution (10%)
- Many difficult backgrounds

Analysis strategy

- 0/1/2 leptons, 2 b-jets
- Invariant mass as key distribution
- Use of NN for improved sensitivity
- Boosted large-R jet categories to access very high p_T regime Validation with VZ, Z \rightarrow bb

Results

- Observation by ATLAS and CMS in 2018
- $\mu = 1.02 \pm 0.18$
- 5σ for ZH, 4σ for WH

log (S/B)

$H \rightarrow bb$ in boosted regime

Inclusive $H \rightarrow bb$ long thought impossible at the LHC

- "True" inclusive $H \rightarrow bb$ really impossible
 - S/B way too low wrt QCD bb production
 - Cannot even trigger on the events
- High-pT regime accessible through specific reconstruction techniques
 - Large-R jet
 - 2-prong, with 2 b-tags
 - Dedicated background estimation techniques
 - Validation with $Z \rightarrow bb$ process

Results

Small excess wrt SM at high-p_T:
 2.5σ observed for 0.7σ expected

VH, $H \rightarrow cc$

Another surprise from Run 2 data

• Like VH, $H \rightarrow bb$, but harder

- Lower BR (2.9% vs 58%)
- c-tagging less performant than b-tagging
 - Higher backgrounds
- Overall very low S/B

Analysis strategy

- Same as VH, $H \rightarrow bb$
- Make use of "resolved" and "merged" topologies
- Powerful $H \rightarrow cc DNN tagger (CMS)$
- Validation with VZ, $Z \rightarrow cc (\mu = 1.01)$

Results

- Observation of $Z \rightarrow cc$ at 5.7 σ
- Limit on VHcc at 14 SM (7.8 expected)
- Constraints on Higgs-charm coupling

Higgs combinations

Combining measurements allows to lift degeneracies and measure with fewer assumptions

- Combined likelihood: multiplication of likelihoods for each input analysis
 - Constraint terms included only once

$$L(\boldsymbol{\alpha}, \boldsymbol{\theta}, \text{data}) = \prod_{k \in \text{cat}} \prod_{b \in \text{bins}} P(n_{k,b} | n_{k,b}^{\text{signal}}(\boldsymbol{\alpha}, \boldsymbol{\theta}) + n_{k,b}^{\text{bkg}}(\boldsymbol{\theta})) \prod_{\boldsymbol{\theta} \in \boldsymbol{\theta}} G(\boldsymbol{\theta})$$

- The parameters of interest can be reparameterized in many ways depending on the measurement signal $c \sum \sum (-p_{ij}) (t_{ij})^{k}$
 - Production cross-section (decays then fixed to SM)

$$n_k^{\text{signal}} = \mathcal{L}_k \sum_i \sum_f (\sigma_i B_f) (A\epsilon)_{if}^k$$

- Decays BR (productions then fixed to SM)
- etc...

• Points of attention

- Compatible set of systematic uncertainties between analyses
- No (or at least negligible) statistical overlap between the analyses included

Combined Higgs likelihood

Over 2600 systematic uncertainties included

Representation of the likelihood of the ATLAS combination. Each terminal node is one term in the likelihood

Combined signal strength

Systematic uncertainties (esp. theoretical ones) dominate

 $\mu = 1.05 \pm 0.06 = 1.05 \pm 0.03$ (stat.) ± 0.03 (exp.) ± 0.04 (sig. th.) ± 0.02 (bkg. th.)

N. Morange (IJCLab)

Higgs production and decay

- All main production and decay modes at the LHC now observed
- Evidence for $H \rightarrow \mu\mu$, interesting limits on $H \rightarrow cc$
- Interesting limits on tH production

Combined STXS measurements

Probing 36 kinematic regions simultaneously

- Very different sensitivities depending on the kinematic regions
- At high pT, larger error bar still provides better constraints on new physics scenarios

32

Di-Higgs searches

Run 2: progress much greater than anticipated

• Ultimate goal: measure Higgs self-coupling

- How: observe HH production
- But: negative interference between self-coupling and other diagrams

Small cross-sections

- At least one $H \rightarrow bb$
- Main channels: bbbb, bbττ, bbγγ

	bb	ww	ττ	ZZ	YY
bb	34%				
ww	25%	4.6%			
ττ	7.3%	2.7%	0.39%		
zz	3.1%	1.1%	0.33%	0.069%	
YY	0.26%	0.10%	0.028%	0.012%	0.0005%

Di-Higgs searches with Run 2

- Significant improvements in analysis techniques
 - In all channels
 - ML, use of boosted regime, ...
- Limits on σ(HH):
 - 2.4 SM for ATLAS
 - o 3.4 SM for CMS
- Constraints on κ_{λ} • -0.4 < κ_{λ} < 6.3
- Quite promising for Run 3 and Run 4

34

Higgs properties

Higgs mass

High-resolution $H \to 4l$ and $H \to \gamma\gamma$ channels

- Requires ultimate precision for lepton and photon energy calibration
- $H \rightarrow \gamma \gamma$: higher stat, but larger systematics
- $H \rightarrow 4I$, esp. $H \rightarrow 4\mu$: low stat, but ultimate precision in the long term
- Combined precision ~ 0.1%

Spin and parity

- Question settled with Run 1 data
 - Observation of $H \rightarrow \gamma \gamma$ forbids spin 1
 - All other hypotheses than 0⁺ disproved using angular distributions in γγ, WW and ZZ channels
- Some level of CP violation still allowed in Higgs production and decay vertices
 - Probed using VBF production, ttH production, $H \rightarrow ZZ$ and $H \rightarrow \tau\tau$ decays
 - Everything compatible with SM so far

Higgs Width

- Direct measurement of Higgs width (4 MeV) impossible at the LHC
- Powerful indirect constraint in the $H \rightarrow ZZ^*$ channel
 - Comparison of on-shell and off-shell signal strengths
 - Hidden assumption: no Q^2 dependence of the Higgs couplings, as in the SM

Higgs width II

- Off-shell cross-section not so small when $Q^2 > 2m_7$
- Interference with ZZ continuum
- > 3σ evidence for Higgs width by ATLAS and CMS
 - CMS: $\Gamma_{\rm H} = 3.2 + 2.5_{-1.7} \,\text{MeV}$

Higgs couplings

The kappa framework

Higgs production and decay mechanisms can be reinterpreted in terms of couplings

- Parameterization can be obtained at different orders for loop processes
- Assumes that only couplings strengths can change, not the kinematics

		$\sigma(i \to H \to f) = \sigma_i B_f = \frac{1}{2}$	$\sigma_i(\boldsymbol{\kappa})\Gamma_f(\boldsymbol{\kappa}, B_{\text{inv.}})$	к) В _{u.})	-
	E.C.		Partial decay width		
Production	Effective	Parametrization in terms of coupling strength modifiers	Γ^{bb}		κ_{L}^{2}
cross section	coupling	1.040.2 + 0.002.2 - 0.028 0.005	Γ^{WW}	-	$\kappa_{\rm HV}^2$
$\sigma(ggF)$	κ_g^-	$1.040 k_t^2 + 0.002 k_b^2 - 0.038 k_t k_b - 0.005 k_t k_c$	Γ^{gg}	κ^2	$1.111 \kappa_{i}^{2} + 0.012 \kappa_{i}^{2} - 0.123 \kappa_{i} \kappa_{b}$
$\sigma(\text{VBF})$	-	$0.733 \kappa_W^2 + 0.267 \kappa_Z^2$	$\Gamma^{\tau\tau}$	-	μ^2
$\sigma(qq/qg \rightarrow ZH)$	-	κ_Z^2	ΓZZ		λ _τ 2
$\sigma(gg \to ZH)$	-	$2.456 \kappa_Z^2 + 0.456 \kappa_t^2 - 1.903 \kappa_Z \kappa_t - 0.011 \kappa_Z \kappa_b + 0.003 \kappa_t \kappa_b$	T	-	$\kappa_{\overline{Z}}$
$\sigma(WH)$	-	κ_W^2	1 ^{ee}	-	$\kappa_c^2 \ (=\kappa_t^2)$
$\sigma(t\bar{t}H)$	-	κ_t^2	$\Gamma^{\gamma\gamma}$	κ^2	$1.589\kappa_W^2 + 0.072\kappa_t^2 - 0.674\kappa_W\kappa_t$
$\sigma(tHW)$	-	$2.909 \kappa_r^2 + 2.310 \kappa_{w}^2 - 4.220 \kappa_r \kappa_W$		Nγ	$+0.009 \kappa_W \kappa_\tau + 0.008 \kappa_W \kappa_b - 0.002 \kappa_t \kappa_b - 0.002 \kappa_t \kappa_\tau$
$\sigma(tHa)$	-	$2.633 \kappa_r^2 + 3.578 \kappa_{rr}^2 - 5.211 \kappa_r \kappa_W$	$\Gamma^{Z\gamma}$	$\kappa_{Z\gamma}^2$	$1.118 \kappa_W^2 - 0.125 \kappa_W \kappa_t + 0.004 \kappa_t^2 + 0.003 \kappa_W \kappa_b$
$\sigma(b\bar{b}H)$	-	κ ² .	Γ^{ss}	-	$\kappa_s^2 \ (= \kappa_b^2)$
		D	$\Gamma^{\mu\mu}$	-	κ_{μ}^2

The kappa framework

Higgs production and decay mechanisms can be reinterpreted in terms of couplings

- Parameterization can be obtained at different orders for loop processes
- Assumes that only couplings strengths can change, not the kinematics

$$\begin{aligned} \sigma(i \to H \to f) &= \sigma_i B_f = \frac{\sigma_i(\kappa) \Gamma_f(\kappa)}{\Gamma_H(\kappa, B_{\text{inv.}}, B_{\text{u.}})} \\ \kappa_H^2(\kappa, B_{\text{inv.}}, B_{\text{u.}}) &= \frac{\sum_p B_p^{\text{SM}} \kappa_p^2}{(1 - B_{\text{inv.}} - B_{\text{u.}})} \xrightarrow{\text{Total width } (B_{\text{inv.}} = B_{\text{u.}} = 0)}{\Gamma_H \kappa_H^2} \\ \hline \end{array}$$

- Different choices possible for parameterization of Higgs width
 - Varies with SM couplings
 - Can leave room for invisible and undetected decays
 - In all cases, an **assumption** has to be made

What to look for

Typical models predict from <1% to 10% deviations

Model	κ_V	κ_b	κ_{γ}
Singlet Mixing	$\sim 6\%$	$\sim 6\%$	$\sim 6\%$
2HDM	$\sim 1\%$	$\sim 10\%$	$\sim 1\%$
Decoupling MSSM	$\sim -0.0013\%$	$\sim 1.6\%$	$\sim4\%$
Composite	$\sim -3\%$	$\sim -(3-9)\%$	$\sim -9\%$
Top Partner	$\sim -2\%$	$\sim -2\%$	$\sim +1\%$

Simple models

Different kappa parameterizations to probe various possible SM deviations

Effective couplings to photons and gluons

Useful in case BSM manifests itself in loops

Particle couplings

Probes the scaling between couplings and masses

Very SM-like Higgs so far !

- 5% precision on boson couplings
- 10–20% precision on fermion couplings

Constraining BSM through Higgs

2HDM models

Quite generic extension of the SM: 2 Higgs doublets instead of 1

• Very rich phenomenology

- 5 Higgs bosons: light h, heavy H, charged H[±], pseudoscalar A
- Classification in 4 types
 - Type I: one doublet couples to fermions, the other to bosons
 - Type II: one doublet couples to up-type quarks, the other to down-type quarks and charged leptons
 - Type II is the Higgs sector of the MSSM
 - Type III and IV: more exotic variations
- 2 parameters: $\tan \beta = v_2 / v_1$, α mixing angle between h and H

Numerous possible constraints

- Direct searches for additional Higgs bosons in many channels
- Couplings deviations in "SM" Higgs (h)

Coupling scale factor	Type I	Type II	Lepton-specific	Flipped
κ_V		Sβ	$-\alpha$	
K _u	$s_{\beta-\alpha} + c_{\beta-\alpha}/\tan\beta$	$s_{\beta-\alpha} + c_{\beta-\alpha}/\tan\beta$	$s_{\beta-\alpha} + c_{\beta-\alpha}/\tan\beta$	$s_{\beta-\alpha} + c_{\beta-\alpha}/\tan\beta$
Кd	$s_{\beta-\alpha} + c_{\beta-\alpha}/\tan\beta$	$s_{\beta-\alpha}$ -tan $\beta c_{\beta-\alpha}$	$s_{\beta-\alpha} + c_{\beta-\alpha}/\tan\beta$	$s_{\beta-\alpha}$ -tan $\beta c_{\beta-\alpha}$
κ _l	$s_{\beta-\alpha} + c_{\beta-\alpha}/\tan\beta$	$s_{\beta-\alpha}$ -tan $\beta c_{\beta-\alpha}$	$s_{\beta-\alpha}$ -tan $\beta c_{\beta-\alpha}$	$s_{\beta-\alpha} + c_{\beta-\alpha}/\tan\beta$

2HDM constraints

Phase space very well constrained from existing measurements

Searches for BSM Higgs decays: LFV

- Lepton flavour violation would be a striking signature of new physics
 - Interest also spurred by B anomalies
- Searches in the Higgs decays
 - Typically $H \rightarrow \tau \mu$ or $H \rightarrow \tau e$
 - Competitive limits wrt other LFV channels
 - Limits:
 - BR(H → $\tau\mu$) < 0.15%
 - BR(H → τe) < 0.22%

Search for BSM Higgs decays: invisible decays

- BR(H \rightarrow inv) is tiny in SM (H \rightarrow ZZ \rightarrow 4v)
- Larger contribution can come from BSM decays
 - Can be candidate for dark matter
- Searches in all production modes
 - Main sensitivity from VBF production
 - Two forward jets, large missing transverse energy

• Results:

- BR(H \rightarrow inv) < 0.11 at 95% CL
- Interpretation in "Higgs portal" models
 - Competitive limits with direct DM experiments under these assumptions

Effective field theories

No direct evidence for new physics at the LHC so far

- View SM as **low-energy approximation** of a more fundamental theory
- Search for BSM by looking for deviations in precision SM measurements
- Effective Field Theory Lagrangian
 - Systematic parameterization of deviations from SM
 - Add all higher-order operators allowed by symmetries, suppressed by powers of cut-off scale Λ
 - Constraints on associated Wilson coefficients

EFT parameterizations

A huge task !

- dim 5 and 7 operators induce large baryon and lepton flavour violation
 - Usually not considered
- Typical effect on cross-sections (BR and acceptance effects have to be included as well):

$$\sigma = \sigma_{
m SM} + \sigma_{
m int} + \sigma_{
m BSM} = \sigma_{
m SM} \left(1 + \sum_i a_i^{(6)} rac{c_i^{(0)}}{\Lambda^2} + \sum_{ij} b_{ij}^{(6)} rac{c_i^{(0)}c_j^{(0)}}{\Lambda^4} + \ldots
ight)$$

Linear terms

Ouadratic terms

- Dim 6: 2499 operators with baryon number conservation
 - Additional symmetries can simplify the problem
 - O(30) operators in flavour-universal scenarios
 - o aka "SMEFT"

• Dim 8: 36971 operators

• Studied only in very specific cases

Non unique choice of operators ⇒ different choices of bases possible

EFT in the Higgs sector

- Choice of basis: "Warsaw"
- A given operator has effects on many processes (not only Higgs)

Wilson coefficient	Operator definition Example diagra	
c _{HG}	$\Phi^{\dagger}\Phi G^{a}_{\mu u}G^{a\mu u}$	^д д б ····· Н
c _{HB}	$\Phi^{\dagger} \Phi B_{\mu u} B^{\mu u}$	$\begin{array}{c} q Z \\ q \\ $
c _{HW}	$\Phi^{\dagger}\Phi W^{I}_{\mu u}W^{I\mu u}$	$\begin{array}{c} q \xrightarrow{W \leq \cdots} q \\ W \leq \cdots H \\ q \xrightarrow{W \leq \cdots} q \end{array}$
C _{HWB}	$\Phi^{\dagger} \Phi W^{I}_{\mu u} B^{I \mu u}$	$\begin{array}{c} q \xrightarrow{\gamma \leqslant} q \\ q \xrightarrow{\gamma \leqslant} \cdots H \\ q \xrightarrow{Z \leqslant} q \end{array}$
c_{Hq1}	$(i\Phi^{\dagger}\overleftrightarrow{D}_{\mu}\Phi)(\bar{q}\gamma^{\mu}q)$	$q \xrightarrow{Z}_{\ell} \ell_{\ell}$
c _{HI1}	$(i\Phi^{\dagger}\overleftrightarrow{D}_{\mu}\Phi)(\bar{\ell}\gamma^{\mu}\ell)$	$q \xrightarrow{Z} \ell_{\ell}$

top EW Diboson C_W tīν $C_{H\square}$ C_{Ht} $C_{HWB} C_{HD} C_{ll}$ $C_{HQ}^{(1)}$ C_{HB} C_{tW} $C_{He} \quad C_{Hl}^{(3)} \quad C_{Hl}^{(1)}$ $C_{HQ}^{(3)}$ C_{HW} C_{tB} $C_{Hq}^{(3)} \ C_{Hq}^{(1)} \ C_{Hu} \ C_{Hu}$ $C^{3,1}_{Qq}$ C_{HG} **EWPO** C_{tH} C_{bH} C^{8}_{Qd} $C^{3,8}_{Qq}$ $C^{1,8}_{Qq}$ C^8_{Qu} C_{G} $C_{\tau H}$

 C^{8}_{ta}

J. Ellis et al, JHEP 04 (2021) 279

 C_{tG}

Higgs

Warsaw basis

 $C_{\mu H}$

Measuring EFT

EFT effects largest at high Q²: use of differential distributions

• Reinterpret the STXS measurements

- For individual channels or for their combination
- Parameterize the cross-section in each STXS category in terms of EFT operators

$ggF(\geq 1 - jet, p_T^H > 200GeV)$	$15.6 \cdot c_{HG}$
$qq \rightarrow Hqq(non - VH)$	$0.1213 \cdot c_{Hbox} - 0.0107 \cdot c_{HDD} - 0.008 \cdot c_{HW} + 0.0313 \cdot c_{HWB} - 0.364 \cdot c_{HWB} - 0.0008 \cdot c_{H$
	$c_{Hl3} + 0.0043 \cdot c_{Hq1} - 0.212 \cdot c_{Hq3} - 0.0108 \cdot c_{Hu} + 0.0038 \cdot c_{Hd} + 0.182 \cdot c_{ll1}$
$qq \rightarrow Hqq(VH)$	$0.120 \cdot c_{Hbox} - 0.0071 \cdot c_{HDD} + 0.623 \cdot c_{HW} + 0.0215 \cdot c_{HB} + 0.098 \cdot c_{HD} + 0.0008 \cdot c_{HB} + 0.0008 \cdot c$
	$c_{HWB} - 0.360 \cdot c_{Hl3} - 0.026 \cdot c_{Hq1} + 1.86 \cdot c_{Hq3} + 0.135 \cdot c_{Hu} - 0.0506 \cdot c_{Hq3} + 0.135 \cdot c_{Hu} - 0.0506 \cdot c_{Hq3} + 0.0006 \cdot $
	$c_{Hd} + 0.181 \cdot c_{ll1}$
$qq \rightarrow Hqq(p_T^{j1} > 200GeV)$	$0.122 \cdot c_{Hbox} - 0.0073 \cdot c_{HDD} - 0.25 \cdot c_{HW} + 0.0024 \cdot c_{HB} + 0.045 \cdot c_{HDD} - 0.25 \cdot c_{HW} + 0.0024 \cdot c_{HB} + 0.045 \cdot c_{HDD} - 0.0073 \cdot c_{HDD} - 0.0073 \cdot c_{HDD} - 0.0073 \cdot c_{HW} + 0.0024 \cdot c_{HB} + 0.0024 \cdot c_{HB} + 0.0045 \cdot c_{HDD} - 0.0073 \cdot c_{HD} + 0.0024 \cdot c_{HB} + 0.0045 \cdot c_{HD} + 0.0024 \cdot c_{HB} + 0.0045 \cdot c_{HD} - 0.0073 \cdot c_{HD} - 0.0073 \cdot c_{HD} + 0.0024 \cdot c_{HB} + 0.0045 \cdot c_{HB} + 0.0045 \cdot c_{HD} + 0.004$
	$c_{HWB} - 0.367 \cdot c_{Hl3} + 0.030 \cdot c_{Hq1} - 0.47 \cdot c_{Hq3} - 0.030 \cdot c_{Hu} + 0.0087 \cdot c_{Hu} + 0.$
	$c_{Hd} + 0.180 \cdot c_{ll1}$
$qq \rightarrow Hlv(p_T^V < 250GeV)$	$0.1212 \cdot c_{Hbox} - 0.0304 \cdot c_{HDD} + 0.874 \cdot c_{HW} - 0.242 \cdot c_{Hl3} + 1.710 \cdot c_{HDD} + 0.874 \cdot c_{HW} - 0.242 \cdot c_{Hl3} + 0.000 \cdot c_{HDD} + 0.000 \cdot c$
	$c_{Hq3} + 0.182 \cdot c_{ll1}$

- More operators than numbers of measurements
 - Scan operators one by one
 - Fix some operators at 0
 - Do PCA (diagonalization) and constrain linear combinations of operators

EFT in the Higgs sector: results

EFT potential: making use of all SM measurements

Unique possibility to look for BSM simultaneously in all SM measurements

- First "global" EFT combinations start to appear
 - Higgs measurements
 - Electroweak processes
 - Precision electroweak observables from LEP
- Very active field of research
 - Many open questions: EFT validity, uncertainties, higher order terms...
 - More channels to be included in global combinations in next years

- Higgs discovery has been a major shift in particle physics
 - Whole new sector of SM Lagrangian to explore
- 10 years after discovery, Higgs boson is a well-known particle
 - Mass, spin, CP properties
 - Couplings to SM particles
 - No sign of deviations from SM so far
- A powerful way to look for BSM
 - No more free parameter in SM: each measurement is a SM consistency test
 - Direct searches for BSM
 - Indirect searches for BSM by looking for deviations in couplings or distributions

- M. Kado, Experimental Physics at Hadron Colliders, CERN Summer school
- Presentations from the 10 year anniversary of the discovery of the Higgs boson, <u>https://indico.cern.ch/event/1135177</u>
- S. Falke, Measurement of the Higgs boson properties with Run 2 data collected by the ATLAS experiment, PhD thesis
- Individual papers from ATLAS and CMS