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Master NPAC:

An introduction to the theory of nuclear 

reactions

Guillaume Hupin

IPN Orsay
prepared with inputs of D. Lacroix

Lecture 3 : Formal theory of nuclear 

scattering by a general potential. 

Inelastic channels. Illustration with the 

nucleon-nucleus reaction.
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When the incident energy permits it, two or more reaction 

channels are opened, e.g.

CNO cycle

s- and r-process

Elastic channel

n
or

p

Radiative capture 

n
or

p 𝛾

This may happens for astrophysical 

reactions
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Neutron capture followed by fission

The understanding of reaction 

channels competition is crucial for 

instance to predict the production of 

long-lived radioactive isotopes.
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Open channel depends on the 

masses of the neighbouring 

nuclei and light fragments 
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Knockout reactions

𝑡+∞

𝑡−∞

Time 2

Time 3

Decay

…

Pick-up (transfer to projectile)

𝑡−∞

𝑡+∞

Time 1

or

Compound 

nucleus

Compound nucleus formation
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1. The diffusion is made by an extended 

source, i.e. the target/projectile have an 

internal degrees of freedom [≠point like]

➢ A general scheme should be developed

2. We need to describe the internal structure 

and excitations of the target/projectile

➢ Exciting the target will induce an energy 

loss of projectile kinetic energy –

inelastic scattering

3. The different channels compete and will 

interfere leading to modified cross-sections 

➢ We need to develop a general scheme 

able to describe the competition 

between several channels 

➢ Or effectively accounting for reduction 

to one channel contribution to 𝜎

n
or

p 𝑟2

𝑟1 𝑟
𝑟c.m.

np

Continuum

ൿห𝑎 + 𝐴∗

𝑡 = 𝑡0 ۧȁ𝑎 + 𝐴

ൿห𝐶∗

ۧȁ𝑎 + 𝐴

ۧȁ𝑏 + 𝐶

𝑅𝑐.𝑚.



7

A few formal aspects

The goal 1) general scheme with 

approximation 2) effective 

description for an ad hoc modeling
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The general form Schrödinger equation

1 ⟶ ∆ + 𝑘2 𝜑 Ԧ𝑟 =
2𝜇

ℏ2
𝑉 Ԧ𝑟 𝜑 Ԧ𝑟

We know the solution for 𝑉 = 0

∆ + 𝑘2 𝜑0 Ԧ𝑟 = 0 where 𝜑0 Ԧ𝑟 =
1

2𝜋 Τ3 2 𝑒
𝑖𝑘∙ Ԧ𝑟

We solve the differential equation with the green 

function method

∆ + 𝑘2 𝜑0 Ԧ𝑟 = 0

The free particle green function is defined by

∆ + 𝑘2 𝐺0 Ԧ𝑟 − Ԧ𝑟′ = 𝛿 Ԧ𝑟 − Ԧ𝑟′

The general solution of 1 is

𝜑± Ԧ𝑟 = 𝜑0 Ԧ𝑟 +
2𝜇

ℏ2
න𝑑3𝑟′𝐺0

± Ԧ𝑟 − Ԧ𝑟′ 𝑉 Ԧ𝑟′ 𝜑± Ԧ𝑟′

Called “Integral form of the diffusion equation”

𝐸 =
ℏ2𝑘2

2𝜇
with

This equation has two solutions

are called outgoing incoming  

Green functions

𝐺0
± Ԧ𝑟 − Ԧ𝑟′ = −

𝑒±𝑖𝑘 𝑟−𝑟′

4𝜋 𝑟 − 𝑟′

We can also defined the full 

green function 𝐺 Ԧ𝑟 − Ԧ𝑟′ , 

solution of ∆ + 𝑘2 −
2𝜇

ℏ2
𝑉 Ԧ𝑟 𝐺 =

𝛿 Ԧ𝑟 − Ԧ𝑟′ then we have 𝜑 =
1 − 𝐺𝑉 𝜑0 “matrix form”
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For the diffusion 

scattering problem

At large distance (𝑟 ≫ 1): Ԧ𝑟 − Ԧ𝑟′ ≅ 𝑟 − Ԧ𝑒𝑟 ∙ Ԧ𝑟
′ +⋯

𝑒±𝑖𝑘 𝑟−𝑟′

𝑟 − 𝑟′
≅
𝑒±𝑖𝑘r

𝑟
𝑒∓𝑖𝑘

′∙ Ԧ𝑟′

This can be cast into 𝐴 𝑒𝑖𝑘. Ԧ𝑟 + 𝑓 Θ,𝜑
𝑒 𝑖𝑘𝑟

𝑟
for 𝜓𝒌

+ Ԧ𝑟 if

𝑓 𝜃, 𝜑 = −2𝜋2
2𝜇

ℏ2
න𝑑3𝑟′

𝑒−𝑖𝑘
′∙ Ԧ𝑟′

2𝜋 Τ3 2
𝑉 Ԧ𝑟′ 𝜓𝒌

+ Ԧ𝑟′

𝜃𝑘

𝑘′

𝜑± Ԧ𝑟 = 𝜑0 Ԧ𝑟 +
2𝜇

ℏ2
න𝑑3𝑟′𝐺0

± Ԧ𝑟 − Ԧ𝑟′ 𝑉 Ԧ𝑟′ 𝜑± Ԧ𝑟′

𝜓𝒌
± Ԧ𝑟 =

𝑒𝑖𝑘∙ Ԧ𝑟

2𝜋 Τ3 2
−
2𝜇

ℏ2
න𝑑3𝑟′

𝑒±𝑖𝑘 𝑟−𝑟′

4𝜋 𝑟 − 𝑟′
𝑉 Ԧ𝑟′ 𝜓𝒌

± Ԧ𝑟′

This is the Lippmann-Schwinger equation

𝑟

𝑟 − 𝑟′

Ԧ𝑒𝑟

𝑟′

with 𝑘 ′ = 𝑘Ԧ𝑒𝑟

Interaction region 

𝑉 Ԧ𝑟′ ≠ 0

Recovering large distance 

asymptotic

𝑘 = 𝑘 ′
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From

𝑓 𝜃, 𝜑 = −2𝜋2
2𝜇

ℏ2
න𝑑3𝑟′

𝑒−𝑖𝑘
′∙ Ԧ𝑟′

2𝜋 Τ3 2
𝑉 Ԧ𝑟′ 𝜓𝒌

+ Ԧ𝑟′

We recognize

𝑓 𝜃, 𝜑 = −2𝜋2
2𝜇

ℏ2
𝜑0,𝒌′ 𝑉 𝜓𝒌

+

Incoming

Outgoing

𝑟

Ԧ𝑒𝑟
𝑘

𝑘 ′

𝑘 = 𝑘 ′

Θ

We deduce the differential cross-section as:

𝑑𝜎 𝜃, 𝜑

𝑑𝛺
= 𝑓 𝛩,𝜑 2 = 2𝜋2

2𝜇

ℏ2

2

𝜑0,𝒌′ 𝑉 𝜓𝒌
+ 2

= 2𝜋2
2𝜇

ℏ2

2

𝑇𝒌′,𝒌
2

𝑇𝒌′,𝒌 is the on-shell [𝑘 = 𝑘’]T-matrix element and relates to the S-matrix by

𝑆𝒌′,𝒌 = 𝛿 𝑘 − 𝑘 ′ − 2𝜋𝛿 𝐸𝑘 − 𝐸𝑘′ 𝑇𝒌′,𝒌

From the definition of 𝜓𝒌
± Ԧ𝑟 , we notice that 𝑆𝒌′,𝒌 = 𝜓𝒌′

− 𝜓𝒌
+
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Incoming

Outgoing

𝑟

Ԧ𝑒𝑟
𝑘

𝑘 ′

𝑘 = 𝑘 ′

Θ

We can perform a partial wave decomposition to obtain

𝑆𝑙 = 1 − 2𝜋𝑖𝑇𝑙(𝐸)

So 𝑇𝑙 𝐸 = − Τ1 𝜋𝑒𝑖𝛿𝑙(𝐸) sin 𝛿𝑙(𝐸) . Similarly 

𝑇𝑙(𝐸) =
2𝜇

𝜋ℏ2
න𝑑𝑟 𝑟𝐽𝑙(𝑘𝑟) 𝑉 𝑟 𝑢𝑙 𝑟

So we have 

𝑒𝑖𝛿𝑙(𝐸) sin 𝛿𝑙(𝐸) = −
2𝜇

ℏ2
න𝑑𝑟 𝑟𝐽𝑙(𝑘𝑟) 𝑉 𝑟 𝑢𝑙 𝑟

Starting from

𝑆𝒌′,𝒌 = 𝛿 𝑘 − 𝑘 ′ − 2𝜋𝛿 𝐸𝑘 − 𝐸𝑘′ 𝑇𝒌′,𝒌
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At large distance, where reaction channels are defined, we find: 

𝜓𝒌
+ Ԧ𝑟 ՜

∞
𝐴 𝑒𝑖𝑘. Ԧ𝑟 + 𝑓 Θ,𝜑

𝑒𝑖𝑘𝑟

𝑟

This can be cast into the form

ȁ ۧ𝜓𝒌
+ = ൿȁ 𝑖𝑘 ൻ ห𝑖𝑘 ۧ𝜓𝒌

+ +෍ ൿȁ 𝑓𝑘′ ൻ ห𝑓𝑘′ ۧ𝜓𝒌
+

So that the probability to populate a given exit channel from the entrance channel is 

𝑓𝑖՜𝑓
2
= ൻ ห𝑓𝑘′ ۧ𝜓𝒌

+ 2
, such that the differential cross section is

𝑑𝜎𝑖՜𝑓

𝑑𝛺
∝ ൻ ห𝑓𝑘′ ۧ𝜓𝒌

+ 2

We have solved

∆ + 𝑘2 𝜑 Ԧ𝑟 =
2𝜇

ℏ2
𝑉 Ԧ𝑟 𝜑 Ԧ𝑟

And kept only the solution 𝜓𝒌
+ corresponding to 

an incoming plane wave of momentum 𝑘

𝜃඀ቚ𝑖𝑘

඀ቚ𝑓𝑘′
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1. At zeroth order in 𝑉(𝑟), the scattering wavefunction translates to 

unperturbed incident plane wave that is 𝜑± Ԧ𝑟 = 𝜑0 Ԧ𝑟
2. At first order in 𝑉, we find

𝜑(1) Ԧ𝑟 = 𝜑0 Ԧ𝑟 +
2𝜇

ℏ2
න𝑑3𝑟′𝐺0

± Ԧ𝑟 − Ԧ𝑟′ 𝑉 Ԧ𝑟′ 𝜑(0) Ԧ𝑟′

3. And then at second order

𝜑(2) Ԧ𝑟 = 𝜑0 Ԧ𝑟 +
2𝜇

ℏ2
න𝑑3𝑟′𝐺0

± Ԧ𝑟 − Ԧ𝑟′ 𝑉 Ԧ𝑟′ 𝜑(1) Ԧ𝑟
′ ⋯

Lippmann-Schwinger equation [in any of their form] are particularly useful:

The equation is self consistent and can be used to write 𝜑± as a series [perturbative 

expansion with 𝑉 ] 

Illustration: perturbative expansion

𝜑± Ԧ𝑟 = 𝜑0 Ԧ𝑟 +
2𝜇

ℏ2
න𝑑3𝑟′𝐺0

± Ԧ𝑟 − Ԧ𝑟′ 𝑉 Ԧ𝑟′ 𝜑± Ԧ𝑟′
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ȁ ۧ𝜑𝒌
+ = ห ൿ𝜑0,𝒌 +

2𝜇

ℏ2
𝐺0𝑉ห ൿ𝜑0,𝒌 +

2𝜇

ℏ2

2

𝐺0𝑉𝐺0𝑉ห ൿ𝜑0,𝒌 +⋯ =෍
2𝜇

ℏ2
𝐺0𝑉

𝑛

ห ൿ𝜑0,𝒌

Formally the series writes

𝑓 𝛩, 𝜑 = −2𝜋2 𝜑0,𝒌′ 𝑉σ
2𝜇
ℏ2

𝐺0𝑉
𝑛

𝜑0,𝒌

Writing the scattering amplitude expressed as a Born series expansion we have

We can understand that the unperturbed plane wave undergoes a sequences of 

multiples scattering events from inside the potential region:

𝑘𝑖

𝑘𝑓
𝑘𝑖

𝑘𝑓 𝑘𝑖

𝑘𝑓
…

But the series may not converged until all terms are including if the potential is strong 

enough

Free propagation
Free 

propagation

Interaction region Interaction regionInteraction region
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The leading term of the Born series is

𝑓 𝛩, 𝜑 = −2𝜋2 𝜑0,𝒌′
2𝜇
ℏ2

𝑉 𝜑0,𝒌

Which gives

𝑑𝜎 𝜃, 𝜑

𝑑𝛺
= 𝑓 𝛩, 𝜑 2 ∝ 𝜑0,𝒌′ 𝑉 𝜑0,𝒌

Unperturbed w.f.

Similarly, we can get the phase shift of the Born approximation

𝑒𝑖𝛿𝑙(𝐸) sin 𝛿𝑙(𝐸) = −
2𝜇

ℏ2
න𝑑𝑟 𝑟2𝐽𝑙(𝑘𝑟)

2𝑉 𝑟

In particular it tells us 

that sign V = sign δ

𝑇𝒌′,𝒌

Initial state

Final states

𝑘

𝑘′
At first order, the fermi golden rule is equivalent 

to the born approximation

Γ𝑘՜𝑘′ = ෍

𝑘′∈𝑑Ω

2𝜋

ℏ
𝒌′ 𝑉 𝒌 2𝛿 𝐸𝑘 − 𝐸𝑘′

=
2𝜋

ℏ
𝒌′ 𝑉 𝒌 2𝑔(𝐸𝑘)

Density of 

state
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Starting from

𝑓 𝛩,𝜑 = −2𝜋2 𝜑0,𝒌′
2𝜇
ℏ2

𝑉 𝜑0,𝒌

We immediately obtain

𝑓Born 𝛩,𝜑 = −2𝜋2
2𝜇

ℏ2
න𝑑3𝑟′

𝑒𝑖 𝑘 −𝑘
′ ∙ Ԧ𝑟′

2𝜋 3 𝑉 Ԧ𝑟′

Which is nothing but the 3D Fourier transform of the 

potential

𝑘
𝑘′

Ԧ𝑞 = 𝑘 − 𝑘 ′

Ԧ𝑞 is the momentum transfer 

to the target by the 

projectile

If the potential is spherical symmetric

𝑓Born 𝛩, 𝜑 = −
2𝜇

ℏ2
න𝑟′2𝑑𝑟′

sin(𝑞𝑟′)

𝑞𝑟′
𝑉 𝑟′

With 𝑞2 = 𝑘2+ 𝑘 ′
2
− 2𝑘𝑘′cos 𝜃



1717

Hofstadter, R., et al., Phys. Rev. 92, 978 (1953).  

Classical approximation to the 

scattering with relativistic correction

𝑑𝜎

𝑑𝛺
Mott

≃
𝑑𝜎

𝑑𝛺
Ruth

cos2
𝛩

2

𝑒−
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Quantum Scattering by a point like particle 

with a Yukawa or Coulomb potential

𝑓Born 𝛩,𝜑 = −
2𝜇

ℏ2
න𝑟′2𝑑𝑟′

sin(𝑞𝑟′)

𝑞𝑟′
𝑉 𝑟′

If we assume that 𝑉 𝑟 = −𝑉0 Τ𝑒−𝛼𝑟
𝑟then

𝑓Born 𝛩, 𝜑 =
2𝜇

ℏ2
𝑉0

1

𝛼2 + 𝑞2

For the Coulomb case we take the limit 𝛼 ⟶
0, and in the elastic case 𝑘 = 𝑘 ′ thus

𝑞2 = 2𝑘2 1 − cos 𝜃 = 4𝑘2sin2 ൗ𝜃 2

We recover the classical formula

𝑑𝜎

𝑑𝛺
=

𝑍1𝑍2𝑒
2

8𝜋𝜀0𝑚𝑣0
2

2

csc4
𝜃

2

𝑒−

−𝑉0 ൗ1 𝑟

−𝑉0 ൗ𝑒−𝛼𝑟
𝑟
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At 𝑟 ≫ 𝑟′, the potential felt by 𝑒− is given by the 

convolution product between the charged density of the 

nucleus (proton density) and the coulomb potential

𝑉 𝑟 = 𝑍1𝑒
2න𝑑3𝑟′

𝜌(Ԧ𝑟′)

Ԧ𝑟′ − Ԧ𝑟

Since the Born scattering amplitude is a Fourier transform 

of the potential the cross section is a product of the 

charged density FT and the Coulomb potential FT (i.e. 

Rutherford) that is

𝑒−

𝜌ch

𝑟 ≫ 𝑟′

𝑟′

න𝑑3𝑟′𝜌(Ԧ𝑟′) = 𝑍Note

𝑑𝜎

𝑑𝛺
=

𝑑𝜎

𝑑𝛺
Mott

𝐹(𝑞) 2 𝐹 𝑞 is called the form factor

At low momentum transfer, 𝐹 𝑞 ~1 −
1

6
𝑞2 𝑟ch

2 +⋯ Note that

𝜆Broglie
𝑒− ≅

5 ∙ 103

𝐸
fm

𝜆Broglie
𝑁 ≅

4,54

𝐸
fm

𝑟ch
𝜆
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𝑒−Electron scattering

𝑒−

Nuclear 

charge density

Large transferred momentum 𝑞
provides shape of the central density 

distribution.

For uniform density

𝐹Born(𝑞) = 3
sin(𝑅𝑞) − 𝑅𝑞cos(𝑅𝑞)

(𝑅𝑞)3

Density in the nucleus

2 Logȁ𝐹Born 𝑞 ȁ

G. Co' et al, JCAP11(2012)010
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𝑒−Electron scattering

𝑒−

Nuclear 

charge density

Density in the nucleus

Nuclear behaves “like” 

incompressible Fermi systems 

with density

Infinite nuclear matter

2D fermi sea
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(From A. Brown website)

Oscillations probes 

shell effects and 

independent particle 

picture of the nucleus

Systematic of nuclear charge density

𝑒 ,𝑘 𝑒′ , 𝑘′
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Density of 206Pb Density of 205Tl

“Wave-function” 

of the last proton

Independent 

Particle picture

Experiments

From Pandharipande et al,
Rev. Mod. Phys. 69, 981

Departure from the 

Independent picture is 

observed: correlations are 

also important (CQFD)
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Rutherford valid until 

matter wavelength 

probe nuclear effects

1. Nuclei are 

extended 

systems 

2. Interact at 

short range 

with strong 

force

• Finite size extension 

• Quantum corrections 

1. Nuclear size 

2. Densities

3. Correlations 

𝑒−

𝜌ch
𝑟

𝑅

𝑒−

From the simplest version Coulomb scattering, we have considered a series 

of reaction models of increasing complexity 
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In some cases, the free-wave approximation is rather poor starting point. 

Suppose 𝑉 = 𝑉MF + 𝑉res and the solutions of ∇2 + 𝑘2− 𝑉MF 𝜒1 𝒌, 𝒓 = 0 are 

known/computable

One can show 𝑓 = 𝑓1 −
2𝜇

4𝜋ℏ2
׬ 𝑑3𝑟′𝜒1

− 𝒌, Ԧ𝑟 𝑉res Ԧ𝑟′ 𝜒𝑘
+ Ԧ𝑟′

The DWBA approximation consists in:

𝜒𝑘
+ ⟶ 𝜒1

+ 𝒌, 𝒓 then 𝑓 = 𝑓1 −
2𝜇

4𝜋ℏ2
𝜒1
− 𝑉 𝜒1

+

In the standard Born Approximation

𝜒𝑘
+ Ԧ𝑟 =

𝑒𝑖𝑘𝛼∙ Ԧ𝑟

2𝜋 Τ3 2
+
2𝜇

ℏ2
න𝑑3𝑟

′
𝑒
𝑖𝑘𝛽 𝑟 −𝑟′

4𝜋 𝑟−𝑟′ 𝑉 Ԧ𝑟′ 𝜒𝑘
+ Ԧ𝑟′

Systematic constructive treatment

𝑓 = −
2𝜇

4𝜋ℏ2
𝒌′ 𝑉 + 𝑉𝐺0𝑉 +⋯ 𝜒𝑘

+

𝑓Born = −
2𝜇

4𝜋ℏ2
𝒌′ 𝑉 𝐤

ൿห𝜒1
−

𝑘𝛼

ൿห𝜒1
+

𝑘′
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Competition between

different channels and internal 

structure of particles 

np

Continuum

ൿห𝑎 + 𝐴∗

𝑡 = 𝑡0 ۧȁ𝑎 + 𝐴

ൿห𝐶∗

ۧȁ𝑎 + 𝐴

ۧȁ𝑏 + 𝐶
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𝜓𝑘
+ Ԧ𝑟 ⟶ 𝑒𝑖𝑘. Ԧ𝑟 + 𝑓 Θ,𝜑

𝑒𝑖𝑘𝑟

𝑟
All energetically 

allowed opened 

channels 𝛽

𝑓 Θ,𝜑 =෍

𝛽

𝑓𝛽 Θ,𝜑

ۧȁ𝑎 + 𝐴

ൿห𝐶∗

ۧȁ𝑏 + 𝐶

𝑡 ≫ 𝑡0

𝑘𝛽

𝑘𝛽

𝑘𝛽

Ψ𝑎Ψ𝐴𝜒𝑘𝛽
𝑓
( Ԧ𝑟)

Ψ𝐶∗

Ψ𝑏Ψ𝐶𝜒𝑘𝛽
𝑓 (Ԧ𝑟)

𝐻𝐶Ψ𝐶∗ = 𝐸𝑛Ψ𝐶∗

𝐻𝑎Ψ𝑎 = 𝐸0Ψ𝑎
𝐻𝐴Ψ𝐴 = 𝐸0Ψ𝐴

channel 

Q-value

Elastic channel, always opened

𝐻𝑏Ψ𝑏 = 𝐸0Ψ𝑏
𝐻𝐶Ψ𝐶 = 𝐸0Ψ𝐶

Note that closed channels 

also contribute but to 

reaction observable

Incoming wave

𝑡 = 𝑡0

ۧȁ𝑎 + 𝐴

𝑘

Ψ𝑎Ψ𝐴𝜒𝑘
𝑖 Ԧ𝑟

𝜒𝑘
𝑖 Ԧ𝑟 ∝ 𝑒𝑖𝑘. Ԧ𝑟

𝐻𝑎Ψ𝑎 = 𝐸0Ψ𝑎
𝐻𝐴Ψ𝐴 = 𝐸0Ψ𝐴

Ψ𝑎 and Ψ𝐴 quantum numbers defined 

conservation of total relative angular 

momentum
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Since Ԧ𝑗 = 𝜌 Ԧ𝑣 with Ԧ𝑣 the wave vector, 

we have that 

𝑑𝜎𝛽
𝑑𝛺

=
Ԧ𝑗𝑓 ∙ ൗ𝑑 Ԧ𝑆

𝑟2

Ԧ𝑗𝑖 ∙ ෠𝑘

Interaction

between target 

and projectile

Partial cross-section

𝜓𝑘
+ Ԧ𝑟 ⟶ 𝑒𝑖𝑘. Ԧ𝑟Ψ𝑎Ψ𝐴 +෍

𝛽

𝑓𝛽 Θ,𝜑
𝑒𝑖𝑘𝛽𝑟

𝑟
Ψ𝑖𝛽Ψ𝐼𝛽

𝑘𝛽

𝑘

Scattering  wave-function

඀ቚ𝑖𝛽 + 𝐼𝛽

𝑑𝜎𝛽
𝑑𝛺

=
𝑣𝛽
𝑣

𝑓𝛽 Θ,𝜑
2

Elastic scattering

Inelastic scattering

𝑣𝛽

𝑣
= 1

𝑣𝛽

𝑣
≠ 1
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ۧȁ𝑏 + 𝐶
ۧȁ𝑏 + 𝑑 + 𝐶

All other reaction 

channels energetically 

allowed (
𝑣𝛽

𝑣
≠ 1)

ൿห𝑎∗ + 𝐴∗

Inelastic scattering
𝑣𝛽

𝑣
≠ 1,

Energetically opens if 

𝐸c.m. is greater than the 

reaction threshold

N
o
n

-e
la

s
ti
c
 c

h
a
n

n
e
ls

𝑘𝛽

𝑘

඀ቚ𝑖𝛽 + 𝐼𝛽

ۧȁ𝑎 + 𝐴

Elastic channel with 
𝑣𝛽

𝑣
= 1, 

always opens

𝑑𝜎𝛽
𝑑𝛺

=
𝑣𝛽
𝑣

ም𝑓𝛽 Θ,𝜑
2

Channels will all interfere…

ۧȁ𝑎 + 𝐴
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With only elastic channel

𝜓𝑘
+ Ԧ𝑟 ⟶ 𝑒𝑖𝑘. Ԧ𝑟 + 𝑓 Θ,𝜑

𝑒𝑖𝑘𝛼𝑟

𝑟

𝑢𝛼,𝑙 𝑟 > R = 𝐴𝛼,𝑙𝜌 𝐻𝑙
− 𝜌 − 𝑆𝛼,𝑙𝐻𝑙

+ 𝜌

The conservation of the momentum leads to 𝑘 = 𝑘𝛼, the 

conservation of the flux [which implies the unitarity of the 

S-matrix i.e. 𝑆𝛼,𝑙𝑆𝛼,𝑙
∗ = 1] means 𝑆𝛼,𝑙 = 𝑒2𝑖𝛿𝑙 , 𝛿 ∈ ℝ

𝑢𝛼,𝑙 𝑟 > R = 𝐴𝛼,𝑙𝜌 𝐻𝑙
− 𝜌 − 𝑆𝛼,𝑙𝐻𝑙

+ 𝜌

𝑢𝛽,𝑙 𝑟 > R = −𝐴𝛽,𝑙𝜌𝑆𝛽,𝑙𝐻𝑙
+ 𝜌

Where 𝑆𝛽,𝑙 = Τ𝑣 𝑣𝛽
ሚ𝑆𝛽,𝑙 and ሚ𝑆𝛽,𝑙 = 𝑒2𝑖𝛿𝑙 , 𝛿 ∈ ℂ. Total 

energy is conserved but 𝑘𝛽 ≠ 𝑘 due to energy 

consumed by the Q value. The flux is distributed among 

channels:

𝑆𝛼,𝑙 𝐸
2
+෍ 𝑆𝛽,𝑙 𝐸

2
= 1

Adding non-elastic channels

𝑘𝛼𝑘

ۧȁ𝑎 + 𝐴

ۧȁ𝑎 + 𝐴

ۧȁ𝑎 + 𝐴
𝑘𝛼

඀ቚ𝑖𝛽 + 𝐼𝛽

𝑘

ۧȁ𝑎 + 𝐴
𝑘𝛽
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Elastic channel:

𝜎el =
𝜋

𝑘2
෍ 2𝑙 + 1 1− ሚ𝑆𝛼,𝑙

2

Inelastic channels:

𝜎in =
𝜋

𝑘2
෍ 2𝑙 + 1 ሚ𝑆𝛽,𝑙

2

Sum of all inelastic channels (absorption cross-

sec.):

𝜎abs =
𝜋

𝑘2
෍ 2𝑙 + 1 (1 − ሚ𝑆𝛼,𝑙

2
)

from 𝑆𝛼,𝑙
2
+ σ 𝑆𝛽,𝑙

2
= 1, and total cross-section

𝜎tot = 𝜎el + 𝜎abs

=
2𝜋

𝑘2
෍ 2𝑙 + 1 (1 − Re( ሚ𝑆𝛼,𝑙))

From Bertulani, Introduction to nuclear physics

𝜓𝑘
+ Ԧ𝑟 ⟶ 𝑒𝑖𝑘. Ԧ𝑟 +෍ ሚ𝑓𝛽 Θ,𝜑

𝑒𝑖𝑘𝛽𝑟

𝑟

ۧȁ𝑎 + 𝐴
𝑘𝛼

඀ቚ𝑖𝛽 + 𝐼𝛽

𝑘

ۧȁ𝑎 + 𝐴
𝑘𝛽
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Why the elastic scattering dominates?

The more peripheral is the 

collision the highest is the 

associated cross-section

Total cross-section

Elastic 

cross-section

Inelastic 

(reaction cross-

section)

𝜎
[m

b
]

𝐸 [MeV]

C
ro

s
s
 s
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c
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FUSION D
ir

e
c
t

E
la

s
ti
c
/Q

u
a
s
i-
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s
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b

𝑃 𝑏 = 2𝜋𝑏
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• The inclusion of inelastic channels 

requires to solve a complex many-

body problem.

Example: We should solve the a+A, 

C, b+B etc. interacting problem to 

get their scattering states

• If we are interested in elastic cross-

section then inelastic channels 

happen as a loss of flux

• In some situation, the coupling to 

inelastic channels can be effectively 

accounted by introducing an 

imaginary potential to reduce the 

flux

ۧȁ𝑎 + 𝐴
𝑘𝛼

ൿห𝑎∗ + 𝐴∗

𝑘

ۧȁ𝑎 + 𝐴
𝑘𝛽

ۧȁ𝑏 + 𝐶

ൿห𝐶∗

𝑉 𝑟 ⟶ 𝑉 𝑟 + 𝑖𝑊(𝑟)
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Optical potential
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Scattering equation with an imaginary potential

∆ + 𝑘2 −
2𝜇

ℏ2
(𝑉 Ԧ𝑟 + 𝑖𝑊(Ԧ𝑟) 𝜑 Ԧ𝑟 = 0

Let’s check that some flux is lost:

Current is Ԧ𝐽 =
ℏ

2𝜇𝑖
𝜑 ∗∇𝜑 − 𝜑∇ 𝜑 ∗

Density is 𝜌 = 𝜑∗𝜑

𝑉 𝑟 + 𝑖𝑊(𝑟)

Incoming Outgoing

∆ + 𝑘2−
2𝜇

ℏ2
(𝑉 Ԧ𝑟 + 𝑖𝑊(Ԧ𝑟) 𝜑 Ԧ𝑟 = 0

∆ + 𝑘2−
2𝜇

ℏ2
(𝑉 Ԧ𝑟 − 𝑖𝑊(Ԧ𝑟) 𝜑∗ Ԧ𝑟 = 0

𝜑∗ Ԧ𝑟

𝜑 Ԧ𝑟

ℏ ∇ ∙ Ԧ𝐽 = 2𝑊(𝑟)𝜌(r)

If 𝑊 𝑟 < 0 Local reduction of the flux
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From  the previous result [ℏ ∇ ∙ Ԧ𝐽 = 2𝑊(𝑟)𝜌(r)] we immediately obtained the lost 

outgoing flux−
2

ℏ
׬ 𝑑3𝑟𝑊(𝑟)𝜌(r), then the absorption cross-section reads

𝜎abs = −
2

ℏ𝑣
න𝑑3𝑟𝑊(𝑟)𝜌(r)

With start with  the conservation of matter

𝑑𝜌

𝑑𝑡
= −∇ ∙ Ԧ𝐽

Which integral form is

𝑑

𝑑𝑡
න𝜌𝑑𝑉 = −න∇ ∙ Ԧ𝐽𝑑𝑉 = න Ԧ𝐽 ∙ 𝑛𝑑𝑆

Which decomposes on partial waves

𝜎abs = −
2

ℏ𝑣

4𝜋

𝑘2
෍(2𝑙 + 1)න 𝑢𝑙(𝑟)

2𝑊(𝑟)𝑑𝑟

To compare with

𝜋

𝑘2
෍ 2𝑙 + 1 (1 − ሚ𝑆𝛼,𝑙

2
)

𝑉 𝑟
+ 𝑖𝑊(𝑟)

Incoming
Outgoing

V
S

1 − ሚ𝑆𝛼,𝑙
2
= −

8

ℏ𝑣
න 𝑢𝑙(𝑟)

2𝑊(𝑟)𝑑𝑟
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1. The optical potential should mimic rather 

complex phenomena in an effective way

2. It should be related to the direct in-

medium interaction of nucleons

3. It should also depend on the incident 

energy (an effect of the Pauli principle 

that screens low-energy collisions) 

Non-elastic channels
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Suppose a uniform system with constant potential 𝑉 = − 𝑉0 + 𝑖𝑊0 , the w.f. reads

Ψ Ԧ𝑟 = 𝑒𝑖𝜿∙𝒓

With 𝜅2 =
2𝜇

ℏ2
(𝐸 + 𝑉0 + 𝑖𝑊0)

Connection between the optical potential and the 

mean-free path

At high energy

𝑉0
+ 𝑖𝑊0

Definition:

Mean-free path: average distance traveled by a 

nucleon without making collisions with other nucleons

𝑊0 ≪ 𝐸 + 𝑉0

𝜅 =
2𝜇

ℏ2
𝐸 + 𝑉0

2

1 +
1

2

𝑖𝑊0

𝐸 + 𝑉0

Ψ Ԧ𝑟 = 𝑒𝑖𝒌∙𝒓𝑒
−
𝑟
𝜆

With

ℏ2𝑘2

2𝜇
= 𝐸 + 𝑉0, 𝜆 =

2
𝜇 𝐸 + 𝑉0

𝑊0

Free wave
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(From J. Cugnon EJC2007)

At very low energy, essentially the average 

mean-field is felt by the incident nucleon



4040Gomes, Walecka and Weisskopf, Ann. Phys. (1958)

𝛥𝑘 = 0.6 𝑘𝐹

NN alone

NN+Fermi sea

free NN
d=1-1.5 fm

Pauli blocking effect strongly “inhibits” 

in-medium collisions
𝑘𝐹

Detector

Fermi 

sea

plane wave scattered 

wave

z-axis

Detector

𝐸𝐵 =
ℏ2𝑘2

2𝜇
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➢ The parameters are varied until 

agreement with experiments for 

total, elastic and absorption 

cross-section is reached

p+208Pb

𝑉 𝑟, 𝐸 = 𝑉 𝐸 𝑓 𝑟, 𝑅𝑣 , 𝑎𝑣 + 4𝑉𝐷 𝐸 𝑓 ′ 𝑟, 𝑅𝑣𝐷 , 𝑎𝑣𝐷
𝑊 𝑟,𝐸 = 𝑊 𝐸 𝑓 𝑟, 𝑅𝑤 , 𝑎𝑤 + 4𝑊𝐷 𝐸 𝑓 ′ 𝑟, 𝑅𝑤𝐷

, 𝑎𝑤𝐷

Example of Phenomenological optical potential (From E. Bauge, EJC 2007)

𝑓 𝑟, 𝑅, 𝑎 =
1

1 + 𝑒
𝑟−𝑅
𝑎

𝑓 ′ 𝑟, 𝑅𝑤𝐷
, 𝑎𝑤𝐷

=
𝑑

𝑑𝑟
𝑓 𝑟, 𝑅, 𝑎

𝑟 (fm)
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Total cross-section

Elastic 

cross-section

Inelastic 

(reaction 

cross-

section)

𝜎
[m

b
]

𝐸 [MeV]

𝑉 𝑟, 𝐸 = 𝑉 𝐸 𝑓 𝑟, 𝑅𝑣 , 𝑎𝑣 + 4𝑉𝐷 𝐸 𝑓 ′ 𝑟, 𝑅𝑣𝐷 , 𝑎𝑣𝐷
𝑊 𝑟,𝐸 = 𝑊 𝐸 𝑓 𝑟, 𝑅𝑤 , 𝑎𝑤 + 4𝑊𝐷 𝐸 𝑓 ′ 𝑟, 𝑅𝑤𝐷

, 𝑎𝑤𝐷

Example of Phenomenological optical potential (From E. Bauge, EJC 2007)



4343(From E. Bauge, Ecole Joliot-Curie 2007)

Differential neutron cross-sections on 90𝑍𝑟 for a beam between 1.5 MeV to 24 MeV   
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Relevant space of 

degrees of freedom (DoF)

Elastic channels Other DOF

Non-elastic channels

(For more details, see E. Bauge Ecole Joliot-Curie 2007)

The coupling induces an 

effective imaginary 

potential for 𝑃

➢ The optical potential is a powerful model to reproduce data

➢ However, it remains a global fit of the experimental data

➢ It does in general not tell much about the underlying physical process

➢ The actual tendency is to provide as much as possible microscopic 

information on the physical processes leading to non-elastic channels 

(excitation of target and projectile, direct reactions, ….)

➢ One standard systematic theory is the Feshbach theory of nuclear reactions 

+ Brückner Hartree-Fock approach (G-matrix)

𝑃

𝑄
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In some cases, it is possible to mimic 

inelastic channels by an optical potential

1 − ሚ𝑆𝛼,𝑙
2
= −

8

ℏ𝑣
න 𝑢𝑙(𝑟)

2𝑊(𝑟)𝑑𝑟

In many situation the scattering problem 

should be directly solved approximately

ۧȁ𝑎 + 𝐴
𝑘𝛼

ൿห𝑎∗ + 𝐴∗

𝑘

ۧȁ𝑎 + 𝐴
𝑘𝛽

ۧȁ𝑏 + 𝐶

ൿห𝐶∗

𝜓𝑘
+ Ԧ𝑟 ⟶ 𝑒𝑖𝑘. Ԧ𝑟Ψ𝑎Ψ𝐴 +෍

𝛽

ሚ𝑓𝛽 Θ,𝜑
𝑒𝑖𝑘𝛽𝑟

𝑟
Ψ𝑖𝛽Ψ𝐼𝛽

𝑑𝜎𝛽

𝑑𝛺
=
𝑣𝛽

𝑣
𝑓𝛽 Θ,𝜑

2
= ሚ𝑓𝛽 Θ,𝜑

2
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For 𝐸~MeV, first inelastic channel is

𝑎 + 𝐴 ⟶ 𝑎∗+ 𝐴∗

In that case both entrance and exit channels 

are a solution of the same scattering equation 

that is:

Continuum

ൿห𝑎∗+ 𝐴∗
𝑘𝛽𝑘

ۧȁ𝑎 + 𝐴

Internal state 

of  ۧȁ𝑎
Internal state of  
ۧȁ𝐴

Relative motion 

of ۧȁ𝑎 + 𝐴

Reaction 

observables
𝐻𝑎Ψ𝑎

𝑖 = 𝐸𝑖
𝑎Ψ𝑎

𝑖 𝐻𝐴Ψ𝐴
𝑗
= 𝐸𝑗

𝐴Ψ𝐴
𝑗

𝐻 = 𝐻𝑎 + 𝐻𝐴 −
ℏ2

2𝜇
∆ Ԧ𝑟
2 + 𝑉(𝑟)

Technically, should derive 

from the same NN+3N+… 

microscopic interaction
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The scattering problem can be solved by writing the 

eigenstates as

𝐻Ψ = 𝐸 Ψ with Ψ = σ𝑥={𝑖,𝑗} 𝜒𝑥 𝒓𝛼 Ψ𝑎
𝑖Ψ𝐴

𝑗

Set of coupled-channel

Equation → solve system 

of linear equation

𝐻 = 𝐻𝑎 +𝐻𝐴 −
ℏ2

2𝜇𝛼
∆ Ԧ𝑟𝛼
2 + 𝑉(𝑟𝛼)Inelastic

No mass partition

No nucleon transfer

ۧȁ𝐴

ൿห𝐴∗

෍

𝑥

𝐸𝑎
𝑖 + 𝐸𝐴

𝑗 − 𝐸 −
ℏ2

2𝜇𝛼
∆ Ԧ𝑟𝛼
2 + 𝑉 𝑟𝛼 𝜒𝑥 𝒓𝛼 Ψ𝑎

𝑖Ψ𝐴
𝑗 = 0

∇𝛼
2 − 𝑈𝑥,𝑥 𝐫𝛼 + 𝑘𝑥

2 𝜒𝑥 𝒓𝛼 = ෍

𝑥′≠𝑥

𝑈𝑥,𝑥′ 𝐫𝛼 𝜒𝑥′ 𝒓𝛽

𝑘𝑥
2 =

2𝜇𝛼
ℏ2

𝐸 − 𝐸𝑎
𝑖 − 𝐸𝐴

𝑗

𝑈𝑥,𝑥′ 𝐫𝛼 =
2𝜇𝛼
ℏ2

Ψ𝑎
𝑖Ψ𝐴

𝑗 𝑉𝛼 Ψ𝑎
𝑖Ψ𝐴

𝑗 =
2𝜇𝛼
ℏ2

ඵ Ψ𝑎
𝑖 ∗

𝝉𝑎 Ψ𝐴
𝑗

∗
𝝉𝐴 𝑉𝛼Ψ𝑎

𝑖 𝝉𝑎 Ψ𝐴
𝑗 𝝉𝑎
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Diagonal: elastic channels Off-diagonal: coupling to 

other channels

𝛻𝛼
2 − 𝑈𝑥,𝑥 𝑟𝛼 + 𝑘𝑥

2 𝜒𝑥 𝑟𝛼 = ෍

𝑥′≠𝑥

𝜒𝑥′ 𝑟𝛼 𝑈𝑥,𝑥′ 𝑟𝛼

➢ The number of channels is a priori infinite then 

the method can be combined with optical 

potential

➢ Different mass partitions can be included 

(nucleons transfer) at the price of increasing 

the number of channel and of computing more 

terms related to overlaps between mass 

partitions

➢ Computation of potential acting on the relative 

motion is tedious

Treated by optical 

potential

Treated explicitly

Continuum 

discretization
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We search for a specific solution of the scattering 

problem 

𝐻 − 𝐸 ۧȁΨ = 0

Compatible with the known incoming wave function 

ൿห𝜑𝑖 (a plane wave). This w.f. ( ൿห𝜓𝑘
+ ) writes 

඀ቚ𝜑𝑓

ൿห𝜑𝑖

ȁ ۧ𝜓𝒌
+ = ൿȁ 𝑖𝑘 ൻ ห𝑖𝑘 ۧ𝜓𝒌

+ +෍ ൿȁ 𝑓𝑘′ ൻ ห𝑓𝑘′ ۧ𝜓𝒌
+ 𝑑𝜎𝑖՜𝑓

𝑑𝛺
∝ ൻ ห𝑓𝑘′ ۧ𝜓𝒌

+ 2

Ψ𝑎Ψ𝐴𝜒𝑘
𝛽
( Ԧ𝑟)

𝐻𝑎Ψ𝑎
0 = 𝐸g.s.

𝑎 Ψ𝑎
0

𝐻𝐴Ψ𝐴
0 = 𝐸g.s.

𝐴 Ψ𝐴
0

𝜇𝛼 = 𝜇𝛽
𝑘 = 𝑘𝛽

Ψ𝑎
𝑖Ψ𝐴

𝑗
𝜒𝑘
𝛽
( Ԧ𝑟)

𝐻𝑎Ψ𝑎
𝑖 = 𝐸𝑖

𝑎Ψ𝑎
𝑖

𝐻𝐴Ψ𝐴
𝑗
= 𝐸𝑗

𝐴Ψ𝐴
𝑗

𝜇𝛼 = 𝜇𝛽
𝑘 ≠ 𝑘𝛽

Ψ𝑏
𝑖Ψ𝐵

𝑗
𝜒𝑘
𝛽
( Ԧ𝑟)

𝐻𝑏Ψ𝑏
𝑖 = 𝐸𝑖

𝑏Ψ𝑏
𝑖

𝐻𝐶Ψ𝐶
𝑗
= 𝐸𝑗

𝐶Ψ𝐶
𝑗

𝜇𝛼 ≠ 𝜇𝛽
𝑘 ≠ 𝑘𝛽

Elastic Inelastic
𝑒𝑖𝑘∙ Ԧ𝑟Ψ𝑎

0 Ψ𝐴
0
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The strategy is just the same taking care of the non-orthogonality 

𝛼: entrance, elastic

𝛽: exit channels 

with change of the 

chemical potential 

composition

We have to deal with 

non orthonormal and 

overcomplete basis 

{ ۧȁ𝛼 , ۧȁ𝛽 }: 𝛼 𝛽 = 𝛿𝛼𝛽

Probability to 

populate channel 

𝛽 given the 

entrance channel

𝐻 = 𝐻𝑎 +𝐻𝐴 −
ℏ2

2𝜇𝛼
∆ Ԧ𝑟𝛼
2 + 𝑉(𝑟𝛼)

ۧȁ𝛼 = ۧȁ𝑎 + 𝐵

𝐻 = 𝐻𝑏 + 𝐻𝐶 −
ℏ2

2𝜇𝛽
∆ Ԧ𝑟𝛽
2 + 𝑉(𝑟𝛽)

ۧȁ𝛽 = ۧȁ𝑏 + 𝐶

ۧȁ𝑏 + 𝐶
𝑘𝛼

ۧȁ𝑎 + 𝐴

𝑘𝛽

ห ൿ𝜓𝒌,𝛼
+ =෍ห ൿ𝜑𝒌,𝛽 𝜑𝒌,𝛽 𝜓𝒌,𝛼

+

𝑓𝛽𝛼
2
= 𝑓𝛼⟶𝛽

2
= 𝜑𝒌,𝛽 𝑉 𝜓𝒌,𝛼

+ 2

𝑑𝜎𝛽𝛼

𝑑𝛺
=
𝑣𝛽

𝑣𝛼
𝑓𝛽𝛼 Θ,𝜑

2

𝑑𝜎𝛽𝛼

𝑑𝛺
=

𝜇α𝜇𝛽

(2𝜋ℏ2)2
𝑘𝛽

𝑘𝛼
𝑇𝛽𝛼 𝒌𝛼 , 𝒌𝛽

2
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Born approximation

Distorted Wave approximation

The scattering states are the solution of [prior form]

∇𝛽
2 + 𝑘𝛽

2 𝜒𝛼 𝒓𝛼 = Ω𝛼 𝒓𝛼

As before the solution is formally

𝜑𝒌,𝛽 𝜒𝒌,𝛼
+ =

𝑒𝑖𝑘𝛼∙ Ԧ𝑟

2𝜋 Τ3 2
𝛿𝛼,𝛽 −

2𝜇𝛼
ℏ2

න𝑑3𝑟𝛽′
𝑒
𝑖𝑘𝛽 𝑟𝛽−𝑟𝛽

′

4𝜋 𝑟𝛽 − 𝑟𝛽
′
𝜑𝒌,𝛽 Ω𝛼 Ԧ𝑟𝛽

′ 𝜒𝒌,𝛼
+

This is the Lippmann-Schwinger equation
= 𝑇𝛽𝛼

𝜒𝒌,𝛼
+ 𝒓𝛼 = 𝜑𝒌,𝜶 𝒓𝛼 =

𝑒𝑖𝑘𝛼∙ Ԧ𝑟𝛼

2𝜋 Τ3 2

∇𝛽
2 − 𝑈𝛼,𝛼 𝐫𝛼 + 𝑘𝛽

2 𝜒𝛼 𝒓𝛼 = Ω𝛼 𝒓𝛼
∇𝛽
2 − 𝑈𝛼,𝛼 𝐫𝛼 + 𝑘𝛽

2 𝜒𝛽
− 𝒓𝛼 = 0

𝑇𝛽𝛼 = 𝜒𝒌,𝛽
− Ω𝛼 Ԧ𝑟𝛽

′ 𝜒𝒌,𝛼
+
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➢ The theory of scattering by a general potential is rather cumbersome 

with many degrees of sophistication

➢ But it is used in many area of physics

➢ Normally particles have internal DoF, are often fermions and have 

spin/isospin that recouple with angular momentum/total isospin.

➢ This makes the theory of scattering even more technical

➢ Without using it we forget almost as fast as we learn this theory

➢ Please remember more the general strategy/physical meaning than the 

technical details


