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GENERALITIES ON THE NUCLEON-NUCLEUS
COLLISIONS
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When the incident energy permits it, two or more reaction
channels are opened, e.g.

[ Elastic channel J

or

p

e
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Cold water Warm water

©2004 Thomson - Brooks/Cole

Neutron capture followed by fission
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« SIMPLE CASE »: REMINDER
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¢ NUCLEON-NUCLEUS COLLISIONS
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THE MANY-FACETS OF A NUCLEON-INDUCED REACTION
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— (p,p} elastic

inciden
protons

{p,p') inelastic

\ » (p,d) pickup

» (p,n)} charge exchange

ﬁ)mpound nucleus formation

Time 1
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& . WHAT ARE THE NEW ASPECTS COMPARED TO THE
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r @ Ty 1. The diffusion is made by an extended
source, i.e. the target/projectile have an
internal degrees of freedom [#point like]

» A general scheme should be developed

2. We need to describe the internal structure
and excitations of the target/projectile

» Exciting the target will induce an energy
loss of projectile kinetic energy —
Inelastic scattering

3. The different channels compete and will
interfere leading to modified cross-sections

» We need to develop a general scheme
able to describe the competition
between several channels

» Or effectively accounting for reduction
to one channel contribution to o
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A few formal aspects

The goal 1) general scheme with
approximation 2) effective
description for an ad hoc modeling
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The general form Schrédinger equation
N2
(D) — @+kDe@ =13V

We know the solution for V = 0

hZ 2
with E =

- - 1 .—’.->
(A + k?)@y(#) = 0 where ¢@,(#) = Welk r

We solve the differential equation with the green
function method

(A+k*)po(7) =0

The free particle green function is defined by
A+ kDG, GF—7)=86F—-7") *

The general solution of (1) is

4 - 2” ! - nd/ nd/ o/
@) = go(P) + 75 j B GEGF — W (E) )

Called “Integral form of the diffusion equation”

¥ This equation has two solutions

eiik|r—r’|
GE(F—7) = —
0 ( ) drt|r — r'|
are called outgoing incoming
. Green functions J

/“We can also defined the full
green function G (7 — '),

solution of (A + k2 — i_gv(;)> G =
s —#) then we have ¢ =

1-GV “matrix form”
| ]<P0 /

8
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i () = @,(#) +ﬁj d3r G(;—r(r —FVE)eE(#)
Recovering large distance
asymptotic i For the diffusion

scattering problem

elkT 2/1 o Tik|r—7'|
—> _ 3. =/ +r20

9 At large distance (r » 1): |7 —7'| =zr—¢€, - 7' + -

eiik|r—r’| o tikr

T S e T\ ith E’=kl\;5r
{ . This can be cast into A( k7 4 f(0,p) —) for Yf () if
o 2u o ik 7!
& f6,9) =—2n°—5 | d°r = vEYiE ()

Interaction region
V(#') #0
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Outgoing g’ k'
‘ From
Tr k = k, el —>I
0,0 = 2022 [ @0 Sy
i \ 0,p) = —2n%— | d3r’ V(ED,t (7
Incoming g \ o JACR (2n)3/2

\
\
1
1

4_.)'1_5

We recognize

We deduce the differential cross-section as:

do (6, ¢) 221\ Za
T=|f(@,<p)|2=<2ﬂ ﬁ) {pow Vi)’ <2ﬂ2 h2> I Tae sl

Ty  1s the on-shell [k = k'] T-matrix element and relates to the S-matrix by
Skl’k = 5(E — E’) — 27'[5(Ek — Ek')Tk’,k
From the definition of £ (), we notice that Sy, = (Y |¥if)

10
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Outgoing k

r \k=k’
\
\

Incoming 3 LN Starting from
" \‘ @ Sk’,k = 5(k - k,) - 2T[5(Ek - Ek’)Tk’,k

'.—-),I_() \‘
1
[

We can perform a partial wave decomposition to obtain
S, =1—2miT;(E)

So Ty(E) = — Y/ze®t®) sin §,(E) . Similarly

1(E) =~ [ dr mCkr) VI )

So we have

e'0E) sin 6,(E) = —%j dr r];(kr) V(r)u,(r)

11
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We have solved

i
(A+k?)p(?) = 2
And kept only the solution yj; corresponding to

an incoming plane wave of momentum k

— V(@) ()

2

At large distance, where reaction channels are defined, we find:

o o ikr
wl-l-(f.’)_)A<elk.r+f(®,(p) er )

This can be cast into the form
i) =1 )il + > | ool Farlwid)

So that the probability to populate a given exit channel from the entrance channel is
2 2 . . . .
\fier|” = [{fr [wi)|”, such that the differential cross section is
dO'l_>f

o (e wid)|

12



PRACTICAL INTEREST OF THE LIPPMANN-SCHWINGER
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Lippmann-Schwinger equation [in any of their form] are particularly useful:

> > 2“ / > =1 =1 =1
9E@) = 90D + 35 [ drGEE — VEIpEE)

A

The equation is self consistent and can be used to write ¢* as a series [perturbative
expansion with V |

[Illustration: perturbative expansion J

1. At zeroth order in V(r), the scattering wavefunction translates to
unperturbed incident plane wave that is ¢ (#) = @, ()
2. At first order in V, we find

@1)(7) = @o(7) +2 JdBT'GJr(T— V() @0y (7)

3. And then at second order

92)(7) = 9o (7) + _j d*r'Gy (F — OV (7 ™)) (T)

13
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Formally the series writes

2 2U ? 2 "
l0it) = |@ox) + ﬁGOV|<P0,k> + <ﬁ> GoVGoV|pox) + = Z <ﬁ G0V> |©0.1)

Writing the scattering amplitude expressed as a Born series expansion we have

2 n
f(o,9) = -2n° <§00,k’ 93 (h_'lzl GOV) ‘Po,k>

We can understand that the unperturbed plane wave undergoes a sequences of
multiples scattering events from inside the potential region:

kr

ki

But the series may not converged until all terms are including if the potential is strong
enough
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The leading term of the Born series is

2
£(0,9) = =21 (00,0| 35 V|00
Unperturbed w.f.
Which gives
do (6, @) .
———= 1£(0, p)|* (<p0,k,|y|<p0,k) Final states

At first order, the fermi golden rule is equivalent Initial staté
to the born approximation

-

[y = Z ~= (k' |V ) *8(Ey, — ) Density of
k'edQ State

_ 7”|<k'|V|k>|2g(Ek>

Similarly, we can get the phase shift of the Born approximation| B N R
that sign(V) = sign(6)

. 2U
e'O1(E) sin §,(E) = _ﬁ dr r2J;(kr)*V(r)
15



EXPLICIT FORM OF THE CROSS SECTION AT THE BORN
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Starting from

2
S f(6,9) = —2n? <‘P0,k"h_lzlv <Po,k>
k i
> i We immediately obtain
qg=k —k'/ 2 i(k —k')-#'
e i )@ =1
// fBorn(0, @) = _anﬁj d>r (2m)3 V(r')
Which is nothing but the 3D Fourier transform of the
g is the momentum transfer potential
to the target by the
projectile

If the potential is spherical symmetric
2u (5. sin(gr’)
fBorn(@: ‘P) — _ﬁ rodr TV(T')
With g% = k2 + k'* — 2kk’ cos 6

16
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Classical approximation to the

scattering with relativistic correction

“““““ (da) (da) 0
— ~ | — COS*“ —
af Mott afl Ruth 2

10
10"
10°
dM
deost | 2|
Scale 10 Hofstadter's electron scattering
s " data dropped below that expectad
10! i for & point nucleus, indicating
= structure of the nuclaus,
1 = L]
10 -1 1 L 1 1 L 1 1 1
-1.0 -0.5 0.0 0.5 1.0
cos 6

Hofstadter,R., et al., Phys.Rev. 92,978 (1953).

17
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Quantum Scattering by a point like particle
with a Yukawa or Coulomb potential

NN 2u (5, ,sin(gr’) |
) A fBorn(@: (P) = _ﬁjr Zdr qr' V(')
do If we assume that V(1) = =V, ¢ “"/,then

2U 1
fBorn(@» (,0) — 72 VO a? + qz

For the Coulomb case we take the limit «a —
0, and in the elastic case k = k' thus

—Qar

—V, € - q* = 2k?(1 — cos ) = 4k?sin? 8/2

We recover the classical formula

do Z]_Zzez F 4 6
= csc*( =
dQ  \8meymv 2

Yukawa potential

18



S & BORN APPROXIMATION: APPLICATION TO THE
Lab ELECTRON SCATTERING CASE

Laboratoire de Physique
"“2'”“”'5/ At r » r', the potential felt by e is given by the
convolution product between the charged density of the
nucleus (proton density) and the coulomb potential
?’ / a4
V(r) — Zlezjd?’r’% Note Jd3r ,D(T' ) =/

Since the Born scattering amplitude is a Fourier transform
of the potential the cross section is a product of the
charged density FT and the Coulomb potential FT (i.e.
Rutherford) that is

do (do [F(q)]2 _
70 -\ 40 (qQ) F(q) is called the form factor
Mott
At low momentum transfer, F(g)~1 — %qz(rczh) + Note that 3
_ 5:10
eBroglie = \/F fm

4,54
=~ —— fm

1 ..
Broglie \/F

19



c ELECTRON SCATTERING, INCOMPRESSIBILITY AND
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/" Electron scattering e~ Nuclear I
charge density

G.Co'et al, JCAP11(2012)010

Large transferred momentum g
provides shape of the central density

S distribution.
0.15\5_ : For uniform density
BN Fuo (@) 3sin(Rq) — Rqcos(Rq)
q =
i (Rq)?
- 2 LoglFBorn(q)l
« AN 2




c ELECTRON SCATTERING, INCOMPRESSIBILITY AND
) [ G SATURATION
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/" Electron scattering e Nuclear I Nuclear behaves “like”

iIncompressible Fermi systems
with density

charge density

2D fermi sea

Density in the nucleus Infinite nuclear matter

[ neutron
matter

symmetric
matter

21
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Systematic of nuclear charge density

0.19

'|I[T_

D.18
0.17
0.16

!III'

0.15
0.14
0.13

D12
0.11

0.1

0.09

charge density
YT

D.C8

o

0.07

0.06

D.05
0.04

IIII’I!

0.03

0.02

D.01

00

STt

2 4 6 8 10 12 14

Oscillations probes
shell effects and
independent particle
picture of the nucleus

(From A. Brown website)

2s

2d3/5 4
33%3 2

P 197/2 8

d——

1p ——

1s

1gg/> 10
2p; /2 2

e 1fsp6

2p3/2 4

1f172 8
dz /2 g

1
281/2
1ds/5 6

e lmi

1p3/2

o 181/2 2
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Density of 2%°Pb Density of 205T]
b /‘M-__— |
""""""""""""" | “Wave-function”
=ssmm Of the last proton
0.010 [T T T T T T LN

Experiments 2

0.008

£ oo | +  Departure from the

2 | E Independent picture is

g 0.004 i Independent ] p . p H

3 Particle plcture observed: correlations are
o0z [ also important (CQFD)

radius (fm)

FIG. 3. Density difference between 2Pb and 2®TI. The ex-
perimental result of Cavendon ef al. (1982) is given by the er-
ror bars; the prediction obtained using Hartree-Fock orbitals
with adjl._lstec! occupatlo? nu_n;lbers is given by the curve. T})e From Pandharipande et al,
systematic shift of 0.0008 fm ™~ at r=4 fm is due to deficiencies

S o ] - Rev.Mod. Phys. 69,981
of the calculation in predicting the core polarization effect.

23



o _ SOME CONCLUSIONS ON COULOMB INTERACTION WITH
) LGP NUCLEI
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From the simplest version Coulomb scattering, we have considered a series
of reaction models of increasing complexity

1. Nuclei are

extended
_db - Rutherford valid until systems
- @ S Z‘ matter wavelength ‘ 2. Interact at
i probe nuclear effects short range
with strong
force

. . . 1. Nuclear size
* FiInite size extension -
. 2. Densities
* Quantum corrections

3. Correlations

24



. A VARIANT OF THE BORN APPROXIMATION:
%) CLab THE DISTORTED WAVE-BORN APPROXIMATION (DWBA)
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In the standard Born Approximation . y 4 l_c)'
lka-r lkﬁlr -7l ka ’ | )

] 3 4-7T|7' —r/| 7! 7! Xl_

Systematic constructive treatment

f=-— hz(k’|v+vcov+ )

fBorn = " 4rx hz (K'|V|Kk)

In some cases, the free-wave approximation is rather poor starting point.

Suppose V = Vg + Ves and the solutions of (V2 + k? — Vyp)x1(k, 1) = 0 are
known/computable

One can show f = f; — —— [ d3r' y7 (k, P)Vees @Dt (7))

4h2

The DWBA approximation consists in:

Xt — xit (k) then f = fi — 5 (G VIxi)
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Competition between
different channels and internal
structure of particles

26
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i () — (em +1(0,¢)

!

FO.0) = ) f3(0,)
p

/ t = tO
Incoming wave

la+ A)
k

~

0>

Lr=
LPaLIJAXk (7;)_) Halpa — quja
L (3 ik.r
Xk (1") X e HALIJA = EOqJA
Y, and ¥, quantum numbers defined

conservation of total relative angular
omentum

ikr

All energetically

allowed opened
channels g

Note that closed channels
also contribute but to
reaction observable

-~

.

A
‘ la+A4) ¥ Waxie, ()

t >t

Elastic channel, always opened

kg  H,W¥, =E,¥,

H,Wy = Eg¥Yy
") we.
kg  HoWer = En¥e
channel
Q-value

W Wext, ()

|b ‘_}I‘ C) Hblpb = qujb
kB HcWe = EoWe




OM CLab SCATTERING PROBLEM OF COMPOSITE SYSTEMS
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lpl-cl- () — elk-TLPaLPA + Z fﬁ(@, @) — qjiﬁlplﬁ
B

Scattering wave-function

4

between target
and projectile

Partial cross-section

> .dS
dO'B Jf - /T2 Since j = pv with v the wave vector,
—~ 5 = we have that
a2 Jitk
v

Elastic scattering f =1

dO'ﬁ ’U’B 2

10 - |fﬁ(®;§0)| - >
Inelastic scattering — *1

28
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SCATTERING PROBLEM OF COMPOSITE SYSTEMS
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dO'ﬁ
df)

Vg | <
=L@

la+ A)

Channels will all interfere...

la+ A)

Elastic channel with %ﬁ =1,

always opens

a*+A*)

\

. . v
Inelastic scattering f + 1,

Energetically opens if
E. ., IS greater than the
reaction threshold

b+ C)
Ib+d+C)
All other reaction
channels energetically

allowed (£ # 1)

Y

Non-elastic channels

J



o INFLUENCE OF THE NON-ELASTIC CHANNELS ON
) [ G CROSS-SECTION
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des 2 Infinis A With only elastic channel
- o eikar
k Yr(@) — (e”‘-’” + (0, p) ” )

g1 (r > R) = Agup (H7 (p) = SoHiF (p))

la+ A)

The conservation of the momentum leads to k = k,, the
conservation of the flux [which implies the unitarity of the
S-matrix i.e. Sq ;Sq;* = 1] means S, ; = €291, 5§ € R

Adding non-elastic channels
Ug (r >R) =Ag,p (Hl_(,D) - Sa,sz+(P))
A

,/' u,ﬁ’l(r > R) = _AB,ZPSB,ZH1+(p)

,l
/ ol

kg  Where Sg; = /%/v; Sp; and Sp; = €219, 5 € C. Total
la+A) energy is conserved but kg # k due to energy

N oo consumed by the Q value. The flux is distributed among
kg channels:

i+ ) s+ Y = 1

1

N

la+ A)

30
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ELASTIC, REACTION AND TOTAL CROSS SECTION
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-

k

la+ A)

1.0 1

05 \Pnpie

Infinis Y,

1 - |‘:’ﬂl?

m = 0 (maximum reaction)

s = —1 (maximum
N\ scattering)

|
0 1 2 3 4 1—m

!2

From Bertulani, Introduction to nuclear physics

r

o _ ikﬁ‘l‘
Vi) — (" + 0.0 )

Elastic channel:

Oo] = %2(21 + 1|1 - Sa,l|2

Inelastic channels:
VIA ~ 2
5= EE(ZI +1)[35,]

Sum of all inelastic channels (absorption cross-
sec.):

VA ~ 2
Oabs = EZ(ZI + 1)(1 » |Sa,l| )

from|S1|* + %|Sg|* = 1, and total cross-section

Otot = Oe] T Oaps

_ %Z(zz + 1) (1 —Re(S4)



a ILLUSTRATION WITH THE NUCLEON-NUCLEUS CASE
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ELASTIC, REACTION AND TOTAL CROSS SECTION
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IIIII I Illi]lll

3 / Total cross-section

. n+7°Pb

| —|
E
= _Elastic é
o cross-section ©
Inelastic
(reaction cross-
‘section)
III JII IIl
102 T 10 102

Why the elastic scattering dominates?

A

= P(b) = 2mb

(@)

(ab]

(D -(7)

@ o

(@]

= (@4

= S o
3 8
W @ b

>

\

2

The more peripheral is the
collision the highest is the
associated cross-section

32



3 TOWARDS A SIMPLIFIED DESCRIPTION OF THE
lb) Csh NUCLEON-NUCLEUS PROBLEM: OPTICAL POTENTIAL
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* The inclusion of inelastic channels
requires to solve a complex many-
body problem.

Example: We should solve the a+A,
C, b+B etc. interacting problem to
get their scattering states

* |f we are interested in elastic cross-
section then inelastic channels
happen as a loss of flux

* In some situation, the coupling to
inelastic channels can be effectively
accounted by introducing an
imaginary potential to reduce the
flux

V(ir) - V(r) +iW(r)

£
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Optical potential
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Scattering equation with an imaginary potential
Incoming Outgoing

(A + k%2 -—— (V(r) + lW(T)) () =0

Let’s check that some flux is lost:

Currentis J = zim ((@)*Vo — pV(p)*)

Density is p = ¢* ¢

—

o () R (A +k? — 2— >(V(@) + lW(r)) o) =0
hV-]=2W(r)p()

o R (A + k? ——(V(r) - lW(T))<p (#) =0

If W (r) < 0 Local reduction of the flux

35



IMAGINARY POTENTIAL: INFLUENCE ON THE CROSS-

SECTION
Iz;abZOIrr?;’(l?:lrfd e Physique - - ] ] )
, S% / With start with the conservation of matter
/ : d
_ Outgoin P S 7
Incomlné \ 9oing ar —V-J
_ 1S
Vv ! Which integral form is
\
N\

i pdV——jV-]dV=j]-ndS

From the previous result [A Y f = 2W (r)p(r)] we immediately obtained the lost
outgoing flux —% [ d3rW (r)p(r), then the absorption cross-section reads

2
Gabs = — j B (r)p(D)

Which decomposes on partial waves

s = =z 9.2+ D) [l @ W

~ 12 8
> 1= 8ail” = =3 [lu @ PW(yar

To compare with

S @+ D = [Se) y
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Qob) CLab PHYSICAL INTERPRETATION : MEAN-FREE PATH

Iréne Joliot-Curie

Laboratoire de Physique

des 2 Infinis

Non-elastic channels

1. The optical potential should mimic rather
complex phenomena in an effective way

2. It should be related to the direct in-
medium interaction of nucleons

3. It should also depend on the incident
energy (an effect of the Pauli principle
that screens low-energy collisions)



PHYSICAL INTERPRETATION : MEAN-FREE PATH

Irénc

Laboratoire de Physique
des 2 Infinis

Definition:

Mean-free path: average distance traveled by a

nucleon without making collisions with other nucleons

Connection between the optical potential and the
mean-free path

Suppose a uniform system with constant potential V = —(V, + iWW,), the w.f. reads
Y(#) = et®r

T , : Wy K E+V,
With k* = 2 (E+V,+iW,) At highenergy
\ = Z'u(E+V) 2 R
T\ n2 < 2E +V,
: _
Y(7) =ekTe™2 v,
Free wave .

2
h2k2 ﬁ E + VO \*

2U B |Wol

0|2
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: GLOBAL VIEW OF THE MEAN-FREE PATH FROM THE
%)C INDEPENDENT PARTICLE PICTURE TO THE DIRECT NN
Lab COLLISION CASE

Iréne Joliot-Curie

Laboratoire de Physique,
des 2 Infinis

7 5 =

- T % NN
,, l ) l
\ .c
o1 L I T Ll [ ST 5 7 EREE) y

- 0.01 01 1 10 100
Elab (GeV/)

(From J. Cugnon EJC2007)

‘ At very low energy, essentially the average
mean-field is felt by the incident nucleon

<



oh CLab WHY THE INDEPENDENT PARTICLE WORKS ?

Iréne Joliot-Curie

Laboratoire de Physique
des 2 Infinis

Detector

h2k?
EB =
24 Z-axis
%é B R Ak = 0.6 kF
plane wave 150 ¢ NN+Fermi sea
100 ¢
0T NN alone
Detector
50 F1.5 fm 2 N\
free NN
-100
:\ -
/ \
| Fermi l Pauli blocking effect strongly “inhibits”
\ sea P in-medium collisions
F /7
\

Gomes, Waleckaand Weisskopf, Ann. Phys. (1958) 40
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Iréne Joliot-Curie

ILLUSTRATION OF OPTICAL POTENTIAL IN NUCLEON-
Lo NUCLEUS CASE

Laboratoire de Physique
des 2 Infinis

Example of Phenomenological optical potential (From E. Bauge, E3c 2007)

V(i E) = V(E)f(r, Ry, ap) + 4V (E)f' (1, Ryp, )
W, E) = WE)f(r, Ry, ay) + 4Wp(E)f' (1, Ry Gy

1
f(r,R,a) =——=
1+e a

d
f'(r, Ry, aWD) = af(r, R,a)

» The parameters are varied until
agreement with experiments for
total, elastic and absorption
cross-section is reached

0.4

0.2

e W+W,

p+28Ph
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oh) CLab

Iréne Joliot-Curie

Laboratoire de Physique
des 2 Infinis

ILLUSTRATION OF OPTICAL POTENTIAL IN NUCLEON-

NUCLEUS CASE

Example of Phenomenological optical potential (From E. Bauge, E3c 2007)

V(rE) = V(E)f(r, Ry, a,) + 4V (E)f' (1, Ry, ayp)
W(r,E) = W(E)f(r,R,,,a,) + 4Wy(E)f’ (r RWD,aWD)

p+>*Pb

E= 195 MeV

e -_’/7-:-;-

0 2 “ 6 8 10 12
r (fm)
2 E E =5 MeV
0
_2 -
%“ —4 e
= -6 E
i I
W10 P00
= 12 =
e —— E = 195 MeV
-16 F
el T T T | | | | |
& 2 4 6 8 10 12
r (fm)

' Elastic
Cross-section

3
0

Inelastic N
 (reaction \
Cross- I E(Mev)
section)
Ix‘,x......l ul / wl Ll
2 10" 1 10 10°
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~ EXAMPLE OF DIFFERENTIAL CROSS-SECTION
‘h) CLab SOME REMARKS

Iréne Joliot-Curie

Laboratoire de Physique
des 2 Infinis

Differential neutron cross-sections on 2°Zr for a beam between 1.5 MeV to 24 MeV

1013 B e I
90 90
Zr(n,n)>Zr
102 B,
1.5 MeV
1.8, .

102 Re 6.9 Mev

s N 1 ~nlenllonllanllaabhdad
0 30 60 90 120 150 180 0 30 60 90 120 150 180

Ocm. (deg ) Ocm (deg )
(From E. Bauge, Ecole Joliot-Curie 2007)
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EXAMPLE OF DIFFERENTIAL CROSS-SECTION

) Lab SOME REMARKS AND CURRENT TREND

Laboratoire de Physique
des 2 Infinis

>

YV YV VY

The optical potential is a powerful model to reproduce data
However, it remains a global fit of the experimental data
It does in general not tell much about the underlying physical process

The actual tendency is to provide as much as possible microscopic
information on the physical processes leading to non-elastic channels
(excitation of target and projectile, direct reactions, ....)

One standard systematic theory is the Feshbach theory of nuclear reactions
+ Bruckner Hartree-Fock approach (G-matrix)

The coupling induces an
effective imaginary
otential for P

Relevant space of
degrees of freedom (DoF)
Elastic channels Other DOF

Non-elastic channels

(For more details, see E. Bauge Ecole Joliot-Curie 2007) 44



BACK TO THE SCATTERING PROBLEM WITH NON-

ELASTIC CHANNELS

@
‘b) CLab
Iréne Joliot-Curie
A
In some cases, it is possible to mimic
inelastic channels by an optical potential

Laboratoire de Physique
. 2 8
1= Sl =~ [ @ PWe)ar

des 2 Infinis

k

In many situation the scattering problem

should be directly solved approximately

eikﬁr
LPiBLIJIﬁ

r

Y@ — eiz"j‘Pa‘PA + z 5(0,9)
B

dO"g

df)

= vj 750,90 = |f5(0,9)|"
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Qob) C COUPLED CHANNEL METHOD
i Lab

Iréne Joliot-Curie

Laboratoire de Physique V

des 2 Infinis ﬁ

il

For E~MeV, first inelastic channel is

y a+A —>a + A
E) S Eﬁ— In that case both entrance and exit channels
at 4 A ) are a solution of the same scattering equation
that is:
la+ A)
> Technically, should derive
2 from the same NN+3N+...
2 . . . .
H =M, + Hy— ﬂ AF H V(‘r) microscopic interaction

e

Internal state Internal state of
of |a) |A)

H W = EfY:  H,W) = EAY)

N

Relative motion
of [a+ A)

¥

Reaction

observables 46



SIMPLIFIED SITUATION

Laboratoire de Physique 2

des 2 Infinis
Inelastic H=H,;+Hy— —Az + V(1)
20 "

No mass partition
No nucleon transfef The scattering problem can be solved by writing the
eigenstates as

o
|

1L

R

HY = EW with W = 3, o 21 (rg) WL W)

2

h o
2 E‘ + Ef ) —— A2 + V() | (r )W) =0
~ 20q @

\ 4

Set of coupled-channel

[fo — Ux,x(ra) + k)%])(x (ry) = z Ux,x'(ra) Xx’(rﬁ) Equation — solve system
of linear equation

\\ x'#x
zﬂa j
ki =3 5 (E - E,-E))
2U -\ * . -
U () = 2 (wiw]|vi|wiw]) = j CONDICAARCHIATICHLTICH
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COUPLED-CHANNEL METHOD : SOME REMARKS

Laboratoire de Physique
des 2 Infinis

[\7052 — Uy (1) + k,zc])(x(ra) = Z X' Uy 1 (1)

x'#x

Diagonal: elastic channels Off-diagonal: coupling to
other channels

» The number of channels is a priori infinite then
the method can be combined with optical

potential
» Different mass partitions can be included %
(nucleons transfer) at the price of increasing Lesidzzze Tregted by optical
the number of channel and of computing more =——— potential
terms related to overlaps between mass
partitions

Treated explicitly
» Computation of potential acting on the relative

motion is tedious




%J (.Lab

Iréne Joliot-Curie

Laboratoire de Physique
des 2 Infinis

| 1)

i) =1 Nl + ) | f){fe [

A SCHEMATIC VIEW OF THE SCATTERING PROCESS

s problem

/

etk Tyl gp

Elastic

-

L ANAG
HanC(l) — Eg.s.tpo?
HoWj = Egs W)

Ha = Up

)

(H-E)¥)=0

df)

do_i—)f

A We search for a specific solution of the scattering

Compatible with the known incoming wave function
;) (a plane wave). This w.f. (|p})) writes

o |(Far ||

Inelastic

(/

WEW)yl ()
H,W! = EfW!
H,¥) = EAY)

Ha = Up

>
/ q_;l[p] B = \
b YpXk (r)
Hp¥)y = Eibtng
HcW/. = Ef ¥,

Ha 7&#3
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, J( SCATTERING PROCESS
Lab

Iréne Joliot-Curie

Laboratoire de Physique 2

des 2 Infinis 2

a: entrance, elastic H = Hq + Hy = z_uaAFa TV () We have to deal with
@) = la + B) non orthonormal and

S exit channels 72 overcomplete basis

with change of the H=H,+H— Z—A,%B +V(rg)  {la)|B)}: (alB) =

chemical potential Hp

composition 1B)y=1b+C)

The strategy is just the same taking care of the non-orthogonality

A k)= Yloasonshiita
‘.' Probability to
’ 2 2 late channel
|f,3a| — |fa_>3| = |<(pk,B|V|¢lta>| E’Og;)itj/:neﬂ::e anne
“' entrance channel
do
df)a - |f54.(6, 0|
a
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SCATTERING AMPLITUDE FROM LS EQUATION ETC.

Laboratoire de Physique
des 2 Infinis

The scattering states are the solution of [prior form]
[VE’ + kﬁz]Xa(ra) = -Q-a(ra)

As before the solution is formally

ik T ”‘Bl’”ﬁ ‘Tél

e 2U e
<(pk,,8|)(l-cl-,a> = W&z,ﬁ - h_za d>

"B 47T|7”3 _ 7”3’| (‘Pk,ﬁ'ﬂa(izﬁ’)')(lta)
= Tgq
This is the Lippmann-Schwinger equation

(27r)3/2

[Born approximation J o) = 0 o(re) =

[VE - Ua,a(ra) + k/?])(a(ra) = Q,(ry)
2 2|.,— y 4
[Distorted Wave approximation J [VB — Uga(re) + kﬁ]XB (re) =0

Toa = (Xic gl 2 (78) | Xk o)




(]
"NV a TO GO MESSAGE
) b Lab

Laboratoire de Physique
des 2 Infinis

» The theory of scattering by a general potential is rather cumbersome
with many degrees of sophistication

» But it is used in many area of physics

» Normally particles have internal DoF, are often fermions and have
spin/isospin that recouple with angular momentum/total isospin.

» This makes the theory of scattering even more technical
» Without using it we forget almost as fast as we learn this theory

» Please remember more the general strategy/physical meaning than the
technical details

W) = fin)(in|¥) + 3 fout) (out| )
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