Irène Joliot-Curie

Master NPAC:

An introduction to the theory of nuclear reactions

Guillaume Hupin
 IPN Orsay

prepared with inputs of D. Lacroix

Lecture 3 : Formal theory of nuclear scattering by a general potential. Inelastic channels. Illustration with the nucleon-nucleus reaction.

generalities ON THE NUCLEON-NUCLEUS COLLISIONS

When the incident energy permits it, two or more reaction channels are opened, e.g.

Radiative capture

This may happens for astrophysical
$\left.\begin{array}{l}\text { reactions } \\ { }^{7} \mathrm{Be}+\mathrm{p} \rightarrow{ }^{8} \mathrm{~B}+\gamma \\ { }^{13} \mathrm{C}+\mathrm{p} \rightarrow{ }^{14} \mathrm{~N}+\gamma \\ { }^{14} \mathrm{~N}+\mathrm{p} \rightarrow{ }^{15} \mathrm{O}+\gamma \\ { }^{15} \mathrm{~N}+\mathrm{p} \rightarrow{ }^{12} \mathrm{C}+{ }^{4} \mathrm{He}\end{array}\right\}$ CNO cycle

Laboratoire de Physique des 2 Infinis

2004 Thomson - Brooks/Cole

Neutron capture followed by fission

The understanding of reaction channels competition is crucial for instance to predict the production of long-lived radioactive isotopes.

«SIMPLE CASE »: REMINDER

Laboratoire de Physique des 2 Infinis

NUCLEON-NUCLEUS COLLISIONS

 THE MANY-FACETS OF A NUCLEON-INDUCED REACTION

Compound nucleus formation

Time 2

1. The diffusion is made by an extended source, i.e. the target/projectile have an internal degrees of freedom [\neq point like]
$>$ A general scheme should be developed
2. We need to describe the internal structure and excitations of the target/projectile
$>$ Exciting the target will induce an energy loss of projectile kinetic energy inelastic scattering
3. The different channels compete and will interfere leading to modified cross-sections
> We need to develop a general scheme able to describe the competition between several channels
$>$ Or effectively accounting for reduction to one channel contribution to σ Laboratoire de Physique des 2 Infinis

A few formal aspects

The goal 1) general scheme with approximation 2) effective description for an ad hoc modeling FORMAL ASPECTS

The general form Schrödinger equation

$$
\text { (1) } \rightarrow\left(\Delta+k^{2}\right) \varphi(\vec{r})=\frac{2 \mu}{\hbar^{2}} V(\vec{r}) \varphi(\vec{r})
$$

with $E=\frac{\hbar^{2} k^{2}}{2 \mu}$

We know the solution for $V=0$

$$
\left(\Delta+k^{2}\right) \varphi_{0}(\vec{r})=0 \text { where } \varphi_{0}(\vec{r})=\frac{1}{(2 \pi)^{3 / 2}} e^{i \vec{k} \cdot \vec{r}}
$$

We solve the differential equation with the green function method

$$
\left(\Delta+k^{2}\right) \varphi_{0}(\vec{r})=0
$$

The free particle green function is defined by

$$
\left(\Delta+k^{2}\right) G_{0}\left(\vec{r}-\vec{r}^{\prime}\right)=\delta\left(\vec{r}-\vec{r}^{\prime}\right)
$$

The general solution of (1) is

$$
\varphi^{ \pm}(\vec{r})=\varphi_{0}(\vec{r})+\frac{2 \mu}{\hbar^{2}} \int d^{3} r^{\prime} G_{0}^{ \pm}\left(\vec{r}-\vec{r}^{\prime}\right) V\left(\vec{r}^{\prime}\right) \varphi^{ \pm}\left(\vec{r}^{\prime}\right)
$$

Called "Integral form of the diffusion equation"

This equation has two solutions

$$
G_{0}^{ \pm}\left(\vec{r}-\vec{r}^{\prime}\right)=-\frac{e^{ \pm i k\left|r-r^{\prime}\right|}}{4 \pi\left|r-r^{\prime}\right|}
$$

are called outgoing incoming Green functions

We can also defined the full green function $G\left(\vec{r}-\vec{r}^{\prime}\right)$, solution of $\left(\Delta+k^{2}-\frac{2 \mu}{h^{2}} v(\vec{r})\right) G=$ $\delta\left(\vec{r}-\vec{r}^{\prime}\right)$ then we have $\varphi=$ $[1-G V] \varphi_{0}$ "matrix form"

FORMAL ASPECTS

Irène Joliot-Curie
Laboratoire de Physique des 2 Infinis

Recovering large distance asymptotic

$$
\varphi^{ \pm}(\vec{r})=\varphi_{0}(\vec{r})+\frac{2 \mu}{\hbar^{2}} \int d^{3} r^{\prime} G_{0}^{ \pm}\left(\vec{r}-\vec{r}^{\prime}\right) V\left(\vec{r}^{\prime}\right) \varphi^{ \pm}\left(\vec{r}^{\prime}\right)
$$

$$
\psi_{k}^{ \pm}(\vec{r})=\frac{e^{i \vec{i} \cdot \vec{r}}}{(2 \pi)^{3 / 2}}-\frac{2 \mu}{\hbar^{2}} \int d^{3} r^{\prime} \frac{e^{ \pm i k\left|r-r^{\prime}\right|}}{4 \pi\left|r-r^{\prime}\right|} V\left(\vec{r}^{\prime}\right) \psi_{k}^{ \pm}\left(\vec{r}^{\prime}\right)
$$

This is the Lippmann-Schwinger equation

At large distance $(r \gg 1):\left|\vec{r}-\vec{r}^{\prime}\right| \cong r-\vec{e}_{r} \cdot \vec{r}^{\prime}+\cdots$

$$
\frac{e^{ \pm i k\left|r-r^{\prime}\right|}}{\left|r-r^{\prime}\right|} \cong \frac{e^{ \pm i k r}}{r} e^{\mp i \vec{k}^{\prime} \cdot \vec{r}^{\prime}} \quad \text { with } \vec{k}^{\prime}=k \vec{e}_{r}
$$

$r-r^{\prime}$ This can be cast into $A\left(e^{i \vec{k} \cdot \vec{r}}+f(\Theta, \varphi) \frac{e^{i k r}}{r}\right)$ for $\psi_{k}^{+}(\vec{r})$ if

$$
f(\theta, \varphi)=-2 \pi^{2} \frac{2 \mu}{\hbar^{2}} \int d^{3} r^{\prime} \frac{e^{-i \vec{k}^{\prime} \cdot \vec{r}^{\prime}}}{(2 \pi)^{3 / 2}} V\left(\vec{r}^{\prime}\right) \psi_{k}^{+}\left(\vec{r}^{\prime}\right)
$$

From

$$
f(\theta, \varphi)=-2 \pi^{2} \frac{2 \mu}{\hbar^{2}} \int d^{3} r^{\prime} \frac{e^{-i \overrightarrow{k^{\prime}} \cdot \vec{r}^{\prime}}}{(2 \pi)^{3 / 2}} V\left(\vec{r}^{\prime}\right) \psi_{\boldsymbol{k}}^{+}\left(\vec{r}^{\prime}\right)
$$

We recognize

$$
f(\theta, \varphi)=-2 \pi^{2} \frac{2 \mu}{\hbar^{2}}\left\langle\varphi_{0, \boldsymbol{k}^{\prime}}\right| V\left|\psi_{\boldsymbol{k}}^{+}\right\rangle
$$

We deduce the differential cross-section as:

$$
\left.\frac{d \sigma(\theta, \varphi)}{d \Omega}=|f(\theta, \varphi)|^{2}=\left(2 \pi^{2} \frac{2 \mu}{\hbar^{2}}\right)^{2}\left|\left\langle\varphi_{0, \boldsymbol{k}^{\prime}}\right| V\right| \psi_{\boldsymbol{k}}^{+}\right\rangle\left.\right|^{2}=\left(2 \pi^{2} \frac{2 \mu}{\hbar^{2}}\right)^{2}\left|T_{\boldsymbol{k}^{\prime}, \boldsymbol{k}}\right|^{2}
$$

$T_{k^{\prime}, \boldsymbol{k}}$ is the on-shell [$\left.k=k^{\prime}\right]$ T-matrix element and relates to the S-matrix by

$$
S_{\boldsymbol{k}^{\prime}, \boldsymbol{k}}=\delta\left(\vec{k}-\vec{k}^{\prime}\right)-2 \pi \delta\left(E_{k}-E_{k^{\prime}}\right) T_{\boldsymbol{k}^{\prime}, \boldsymbol{k}}
$$

From the definition of $\psi_{\overrightarrow{\boldsymbol{k}}}^{ \pm}(\vec{r})$, we notice that $S_{\boldsymbol{k}^{\prime}, \boldsymbol{k}}=\left\langle\psi_{\boldsymbol{k}^{\prime}}^{-} \mid \psi_{\boldsymbol{k}}^{+}\right\rangle$

Starting from

$$
S_{\boldsymbol{k}^{\prime}, \boldsymbol{k}}=\delta\left(\vec{k}-\vec{k}^{\prime}\right)-2 \pi \delta\left(E_{k}-E_{k^{\prime}}\right) T_{\boldsymbol{k}^{\prime}, \boldsymbol{k}}
$$

We can perform a partial wave decomposition to obtain

$$
S_{l}=1-2 \pi i T_{l}(E)
$$

So $T_{l}(E)=-1 / \pi e^{i \delta_{l}(E)} \sin \delta_{l}(E)$. Similarly

$$
T_{l}(E)=\frac{2 \mu}{\pi \hbar^{2}} \int d r r J_{l}(k r) V(r) u_{l}(r)
$$

So we have

$$
e^{i \delta_{l}(E)} \sin \delta_{l}(E)=-\frac{2 \mu}{\hbar^{2}} \int d r r J_{l}(k r) V(r) u_{l}(r)
$$

A SCHEMATIC VIEW OF THE SCATTERING PROCESS

We have solved

$$
\left(\Delta+k^{2}\right) \varphi(\vec{r})=\frac{2 \mu}{\hbar^{2}} V(\vec{r}) \varphi(\vec{r})
$$

And kept only the solution $\psi_{\boldsymbol{k}}^{+}$corresponding to an incoming plane wave of momentum \vec{k}

At large distance, where reaction channels are defined, we find:

$$
\psi_{\boldsymbol{k}}^{+}(\vec{r}) \xrightarrow{\infty} A\left(e^{i \vec{k} \cdot \vec{r}}+f(\Theta, \varphi) \frac{e^{i k r}}{r}\right)
$$

This can be cast into the form

$$
\left|\psi_{\boldsymbol{k}}^{+}\right\rangle=\left|i_{\vec{k}}\right\rangle\left\langle i_{\vec{k}} \mid \psi_{\boldsymbol{k}}^{+}\right\rangle+\sum\left|f_{\vec{k}^{\prime}}\right\rangle\left\langle f_{\vec{k}^{\prime}} \mid \psi_{\boldsymbol{k}}^{+}\right\rangle
$$

So that the probability to populate a given exit channel from the entrance channel is $\left|f_{i \rightarrow f}\right|^{2}=\left|\left\langle f_{\vec{k}^{\prime}} \mid \psi_{\boldsymbol{k}}^{+}\right\rangle\right|^{2}$, such that the differential cross section is

$$
\frac{d \sigma_{i \rightarrow f}}{d \Omega} \propto\left|\left\langle f_{\vec{k}^{\prime}} \mid \psi_{\boldsymbol{k}}^{+}\right\rangle\right|^{2}
$$

PRACTICAL INTEREST OF THE LIPPMANN-SCHWINGER EQUATION

Lippmann-Schwinger equation [in any of their form] are particularly useful:

$$
\varphi^{ \pm}(\vec{r})=\varphi_{0}(\vec{r})+\frac{2 \mu}{\hbar^{2}} \int d^{3} r^{\prime} G_{0}^{ \pm}\left(\vec{r}-\vec{r}^{\prime}\right) V\left(\vec{r}^{\prime}\right) \varphi^{ \pm}\left(\vec{r}^{\prime}\right)
$$

The equation is self consistent and can be used to write $\varphi^{ \pm}$as a series [perturbative expansion with V]

Illustration: perturbative expansion

1. At zeroth order in $V(r)$, the scattering wavefunction translates to unperturbed incident plane wave that is $\varphi^{ \pm}(\vec{r})=\varphi_{0}(\vec{r})$
2. At first order in V, we find

$$
\varphi_{(1)}(\vec{r})=\varphi_{0}(\vec{r})+\frac{2 \mu}{\hbar^{2}} \int d^{3} r^{\prime} G_{0}^{ \pm}\left(\vec{r}-\vec{r}^{\prime}\right) V\left(\vec{r}^{\prime}\right) \varphi_{(0)}\left(\vec{r}^{\prime}\right)
$$

3. And then at second order

$$
\varphi_{(2)}(\vec{r})=\varphi_{0}(\vec{r})+\frac{2 \mu}{\hbar^{2}} \int d^{3} r^{\prime} G_{0}^{ \pm}\left(\vec{r}-\vec{r}^{\prime}\right) V\left(\vec{r}^{\prime}\right) \varphi_{(1)}\left(\vec{r}^{\prime}\right)
$$

Formally the series writes

$$
\left|\varphi_{\boldsymbol{k}}^{+}\right\rangle=\left|\varphi_{0, \boldsymbol{k}}\right\rangle+\frac{2 \mu}{\hbar^{2}} G_{0} V\left|\varphi_{0, \boldsymbol{k}}\right\rangle+\left(\frac{2 \mu}{\hbar^{2}}\right)^{2} G_{0} V G_{0} V\left|\varphi_{0, \boldsymbol{k}}\right\rangle+\cdots=\sum\left(\frac{2 \mu}{\hbar^{2}} G_{0} V\right)^{n}\left|\varphi_{0, \boldsymbol{k}}\right\rangle
$$

Writing the scattering amplitude expressed as a Born series expansion we have

$$
f(\Theta, \varphi)=-2 \pi^{2}\left\langle\varphi_{0, \boldsymbol{k}^{\prime}}\right| V \sum\left(\frac{2 \mu}{\hbar^{2}} G_{0} V\right)^{n}\left|\varphi_{0, \boldsymbol{k}}\right\rangle
$$

We can understand that the unperturbed plane wave undergoes a sequences of multiples scattering events from inside the potential region:

But the series may not converged until all terms are including if the potential is strong enough

THE BORN APPROXIMATION (I.E. FIRST ORDER)

The leading term of the Born series is

$$
f(\Theta, \varphi)=-2 \pi^{2}\left\langle\varphi_{0, \boldsymbol{k}^{\prime}}\right| \frac{2 \mu}{\hbar^{2}} V\left|\varphi_{0, k}\right\rangle
$$

Which gives
Unperturbed w.f.

$$
\frac{d \sigma(\theta, \varphi)}{d \Omega}=|f(\theta, \varphi)|^{2} \propto\left\langle\varphi_{0, \boldsymbol{k}^{\prime}}\right| V\left|\varphi_{0, k}\right\rangle
$$

At first order, the fermi golden rule is equivalent to the born approximation

$$
\begin{array}{rll}
\Gamma_{k \rightarrow k^{\prime}}= & \left.\sum_{k^{\prime} \in d \Omega} \frac{2 \pi}{\hbar}\left|\left\langle\boldsymbol{k}^{\prime}\right| V\right| \boldsymbol{k}\right\rangle\left.\right|^{2} \delta\left(E_{k}-E_{k^{\prime}}\right) & \begin{array}{l}
\text { Density of } \\
\text { state }
\end{array} \\
& \left.=\frac{2 \pi}{\hbar}\left|\left\langle\boldsymbol{k}^{\prime}\right| V\right| \boldsymbol{k}\right\rangle\left.\right|^{2} g\left(E_{k}\right)
\end{array}
$$

Similarly, we can get the phase shift of the Born approximation

$$
e^{i \delta_{l}(E)} \sin \delta_{l}(E)=-\frac{2 \mu}{\hbar^{2}} \int d r r^{2} J_{l}(k r)^{2} V(r)
$$

In particular it tells us that $\operatorname{sign}(V)=\operatorname{sign}(\delta)$

EXPLICIT FORM OF THE CROSS SECTION AT THE BORN APPROXIMATION

\vec{q} is the momentum transfer

Which is nothing but the 3D Fourier transform of the potential
Starting from

$$
f(\Theta, \varphi)=-2 \pi^{2}\left\langle\varphi_{0, \boldsymbol{k}^{\prime}}\right| \frac{2 \mu}{\hbar^{2}} V\left|\varphi_{0, \boldsymbol{k}}\right\rangle
$$

We immediately obtain

$$
f_{\mathrm{Born}}(\Theta, \varphi)=-2 \pi^{2} \frac{2 \mu}{\hbar^{2}} \int d^{3} r^{\prime} \frac{e^{i\left(\vec{k}-\vec{k}^{\prime}\right) \cdot \vec{r}^{\prime}}}{(2 \pi)^{3}} V\left(\vec{r}^{\prime}\right)
$$ to the target by the projectile

If the potential is spherical symmetric

$$
f_{\mathrm{Born}}(\Theta, \varphi)=-\frac{2 \mu}{\hbar^{2}} \int r^{\prime 2} d r^{\prime} \frac{\sin \left(q r^{\prime}\right)}{q r^{\prime}} V\left(r^{\prime}\right)
$$

With $q^{2}=k^{2}+k^{\prime 2}-2 k k^{\prime} \cos \theta$

Classical approximation to the scattering with relativistic correction

$$
\left(\frac{d \sigma}{d \Omega}\right)_{\text {Mott }} \simeq\left(\frac{d \sigma}{d \Omega}\right)_{\text {Ruth }} \cos ^{2} \frac{\Theta}{2}
$$

Hofstadter, R., et al., Phys. Rev. 92, 978 (1953).

Quantum Scattering by a point like particle with a Yukawa or Coulomb potential

$$
f_{\text {Born }}(\Theta, \varphi)=-\frac{2 \mu}{\hbar^{2}} \int r^{\prime 2} d r^{\prime} \frac{\sin \left(q r^{\prime}\right)}{q r^{\prime}} V\left(r^{\prime}\right)
$$

If we assume that $V(r)=-V_{0} e^{-\alpha r} / r$ then

$$
f_{\mathrm{Born}}(\Theta, \varphi)=\frac{2 \mu}{\hbar^{2}} V_{0} \frac{1}{\alpha^{2}+q^{2}}
$$

For the Coulomb case we take the limit $\alpha \rightarrow$ 0 , and in the elastic case $k=k^{\prime}$ thus

$$
q^{2}=2 k^{2}(1-\cos \theta)=4 k^{2} \sin ^{2} \theta / 2
$$

We recover the classical formula

$$
\frac{d \sigma}{d \Omega}=\left(\frac{Z_{1} Z_{2} e^{2}}{8 \pi \varepsilon_{0} m v_{0}^{2}}\right)^{2} \csc ^{4}\left(\frac{\theta}{2}\right)
$$

At low momentum transfer, $F(q) \sim 1-\frac{1}{6} q^{2}\left\langle r_{\mathrm{ch}}^{2}\right\rangle+\cdots \quad$ Note that

$$
\begin{aligned}
& \lambda_{\text {Broglie }}^{e^{-}} \cong \frac{5 \cdot 10^{3}}{\sqrt{E}} \mathrm{fm} \\
& \lambda_{\text {Broglie }}^{N} \cong \frac{4,54}{\sqrt{E}} \mathrm{fm}
\end{aligned}
$$ SATURATION

Large transferred momentum q provides shape of the central density distribution.
For uniform density

$$
20
$$

ELECTRON SCATTERING, INCOMPRESSIBILITY AND SATURATION

Nuclear behaves "like" incompressible Fermi systems with density

Infinite nuclear matter

SYSTEMATIC OBSERVATION OF CHARGE DENSITY

Laboratoire de Physique des 2 Infinis

Systematic of nuclear charge density

Oscillations probes shell effects and independent particle picture of the nucleus
 DEPARTURE OF THE INDEPENDENT PARTICLE PICTURE

Density of ${ }^{206} \mathrm{~Pb} \quad$ Density of ${ }^{205} \mathrm{TI}$

"Wave-function" of the last proton

Departure from the Independent picture is observed: correlations are also important (CQFD)

FIG. 3. Density difference between ${ }^{206} \mathrm{~Pb}$ and ${ }^{205} \mathrm{Tl}$. The experimental result of Cavendon et al. (1982) is given by the error bars; the prediction obtained using Hartree-Fock orbitals with adjusted occupation numbers is given by the curve. The systematic shift of $0.0008 \mathrm{fm}^{-3}$ at $r \leqslant 4 \mathrm{fm}$ is due to deficiencies of the calculation in predicting the core polarization effect.

From Pandharipande et al, Rev. Mod. Phys. 69, 981 SOME CONCLUSIONS ON COULOMB INTERACTION WITH NUCLEI

From the simplest version Coulomb scattering, we have considered a series of reaction models of increasing complexity

Rutherford valid until matter wavelength probe nuclear effects

- Finite size extension - Quantum corrections

1. Nuclei are extended systems
2. Interact at short range with strong force
3. Nuclear size
4. Densities
5. Correlations

A VARIANT OF THE BORN APPROXIMATION: THE DISTORTED WAVE-BORN APPROXIMATION (DWBA)

Irène Joliot-Curie

In the standard Born Approximation

$$
\chi_{k}^{+}(\vec{r})=\frac{e^{i \vec{k}_{\alpha} \cdot \vec{r}}}{(2 \pi)^{3 / 2}}+\frac{2 \mu}{\hbar^{2}} \int d^{3} r^{\frac{, e^{i k_{\beta}\left|r-r^{\prime}\right|}}{4 \pi\left|r-r^{\prime}\right|}} V\left(\vec{r}^{\prime}\right) \chi_{k}^{+}\left(\vec{r}^{\prime}\right)
$$

Systematic constructive treatment

$$
\begin{gathered}
f=-\frac{2 \mu}{4 \pi \hbar^{2}}\left\langle\boldsymbol{k}^{\prime}\right| V+V G_{0} V+\cdots\left|\chi_{k}^{+}\right\rangle \\
f_{\text {Born }}=-\frac{2 \mu}{4 \pi \hbar^{2}}\left\langle\boldsymbol{k}^{\prime}\right| V|\mathbf{k}\rangle
\end{gathered}
$$

In some cases, the free-wave approximation is rather poor starting point.
Suppose $V=V_{\mathrm{MF}}+V_{\text {res }}$ and the solutions of $\left(\nabla^{2}+k^{2}-V_{\mathrm{MF}}\right) \chi_{1}(\boldsymbol{k}, \boldsymbol{r})=0$ are known/computable

One can show $f=f_{1}-\frac{2 \mu}{4 \pi \hbar^{2}} \int d^{3} r^{\prime} \chi_{1}^{-}(\boldsymbol{k}, \vec{r}) V_{\text {res }}\left(\vec{r}^{\prime}\right) \chi_{k}^{+}\left(\vec{r}^{\prime}\right)$
The DWBA approximation consists in:
$\chi_{k}^{+} \rightarrow \chi_{1}^{+}(\boldsymbol{k}, \boldsymbol{r})$ then $f=f_{1}-\frac{2 \mu}{4 \pi \hbar^{2}}\left\langle\chi_{1}^{-}\right| V\left|\chi_{1}^{+}\right\rangle$ Laboratoire de Physique des 2 Infinis

Competition between different channels and internal

 structure of particles

GENERALISATION TO MULTICHANNEL DECOMPOSITION

Irène Joliot-Curie

Laboratoire de Physique des 2 Infinis

$$
\begin{aligned}
& \psi_{k}^{+}(\vec{r}) \rightarrow\left(e^{i \vec{k} \cdot \vec{r}}+f(\Theta, \varphi) \frac{e^{i k r}}{r}\right) \\
& f(\Theta, \varphi)=\sum_{\beta} f_{\beta}(\Theta, \varphi)
\end{aligned}
$$

All energetically allowed opened channels β

Note that closed channels also contribute but to

$$
t=t_{0}
$$

Incoming wave

$$
|a+A\rangle
$$

$$
\begin{array}{ll}
\Psi_{a} \Psi_{A} \chi_{k}^{i}(\vec{r}) & H_{a} \Psi_{a}=E_{0} \Psi_{a} \\
\chi_{k}^{i}(\vec{r}) \propto e^{i k} \cdot \vec{r} & H_{A} \Psi_{A}=E_{0} \Psi_{A}
\end{array}
$$

Ψ_{a} and Ψ_{A} quantum numbers defined conservation of total relative angular momentum

Lab

SCATTERING PROBLEM OF COMPOSITE SYSTEMS

Scattering wave-function
$\vec{k} \longrightarrow\left(e^{i \vec{k} \cdot \vec{r}} \Psi_{a} \Psi_{A}+\sum_{\beta} f_{\beta}(\Theta, \varphi) \frac{e^{i k_{\beta} r}}{r} \Psi_{i_{\beta}} \Psi_{I_{\beta}}\right)$

$$
\frac{d \sigma_{\beta}}{d \Omega}=\frac{\vec{J}_{f} \cdot d \vec{S} / r^{2}}{\vec{J}_{i} \cdot \hat{k}}
$$

Since $\vec{\jmath}=\rho \vec{v}$ with \vec{v} the wave vector, we have that

Elastic scattering

$$
\begin{aligned}
& \frac{v_{\beta}}{v}=1 \\
& \frac{v_{\beta}}{v} \neq 1
\end{aligned}
$$

SCATTERING PROBLEM OF COMPOSITE SYSTEMS

$$
\frac{d \sigma_{\beta}}{d \Omega}=\frac{v_{\beta}}{v}\left|\breve{f}_{\beta}(\Theta, \varphi)\right|^{2}
$$

$$
|a+A\rangle
$$

Elastic channel with $\frac{v_{\beta}}{v}=1$, always opens

$$
\left|a^{*}+A^{*}\right\rangle
$$

Inelastic scattering $\frac{v_{\beta}}{v} \neq 1$,
Energetically opens if $E_{\text {c.m. }}$ is greater than the reaction threshold

$$
\begin{gathered}
|b+c\rangle \\
|b+d+c\rangle
\end{gathered}
$$

All other reaction channels energetically
allowed $\left(\frac{v_{\beta}}{v} \neq 1\right)$

INFLUENCE OF THE NON-ELASTIC CHANNELS ON CROSS-SECTION

Laboratoire de Physique des 2 Infinis

With only elastic channel

$$
\begin{aligned}
\psi_{k}^{+}(\vec{r}) & \rightarrow\left(e^{i \vec{k} \cdot \vec{r}}+f(\Theta, \varphi) \frac{e^{i k_{\alpha} r}}{r}\right) \\
u_{\alpha, l}(r>\mathrm{R}) & =A_{\alpha, l} \rho\left(H_{l}^{-}(\rho)-S_{\alpha, l} H_{l}^{+}(\rho)\right)
\end{aligned}
$$

The conservation of the momentum leads to $k=k_{\alpha}$, the conservation of the flux [which implies the unitarity of the S-matrix i.e. $\left.S_{\alpha, l} S_{\alpha, l}{ }^{*}=1\right]$ means $S_{\alpha, l}=e^{2 i \delta_{l}, \delta \in \mathbb{R}}$
Adding non-elastic channels

$$
\begin{gathered}
u_{\alpha, l}(r>\mathrm{R})=A_{\alpha, l} \rho\left(H_{l}^{-}(\rho)-S_{\alpha, l} H_{l}^{+}(\rho)\right) \\
u_{\beta, l}(r>\mathrm{R})=-A_{\beta, l} \rho S_{\beta, l} H_{l}^{+}(\rho)
\end{gathered}
$$

Where $S_{\beta, l}=\sqrt{v^{\nu} / v_{\beta}} \tilde{S}_{\beta, l}$ and $\tilde{S}_{\beta, l}=e^{2 i \delta_{l}, \delta \in \mathbb{C} \text {. Total }}$ $|a+A\rangle$ energy is conserved but $k_{\beta} \neq k$ due to energy consumed by the Q value. The flux is distributed among channels:

$$
\left|S_{\alpha, l}(E)\right|^{2}+\sum\left|S_{\beta, l}(E)\right|^{2}=1
$$

ELASTIC, REACTION AND TOTAL CROSS SECTION

$$
\psi_{k}^{+}(\vec{r}) \rightarrow\left(e^{i \vec{k} \cdot \vec{r}}+\sum \tilde{f}_{\beta}(\Theta, \varphi) \frac{e^{i k_{\beta} r}}{r}\right)
$$

Elastic channel:

$$
\sigma_{\mathrm{el}}=\frac{\pi}{k^{2}} \sum(2 l+1)\left|1-\tilde{S}_{\alpha, l}\right|^{2}
$$

Inelastic channels:

$$
\sigma_{\mathrm{in}}=\frac{\pi}{k^{2}} \sum(2 l+1)\left|\tilde{S}_{\beta, l}\right|^{2}
$$

Sum of all inelastic channels (absorption crosssec.):

$$
\sigma_{\mathrm{abs}}=\frac{\pi}{k^{2}} \sum(2 l+1)\left(1-\left|\tilde{S}_{\alpha, l}\right|^{2}\right)
$$

from $\left|S_{\alpha, l}\right|^{2}+\sum\left|S_{\beta, l}\right|^{2}=1$, and total cross-section

$$
\begin{gathered}
\sigma_{\mathrm{tot}}=\sigma_{\mathrm{el}}+\sigma_{\mathrm{abs}} \\
=\frac{2 \pi}{k^{2}} \sum(2 l+1)\left(1-\operatorname{Re}\left(\tilde{S}_{\alpha, l}\right)\right)
\end{gathered}
$$

ILLUSTRATION WITH THE NUCLEON-NUCLEUS CASE ELASTIC, REACTION AND TOTAL CROSS SECTION

Why the elastic scattering dominates?

The more peripheral is the collision the highest is the associated cross-section

- The inclusion of inelastic channels requires to solve a complex manybody problem.
Example: We should solve the $\mathrm{a}+\mathrm{A}$, $C, b+B$ etc. interacting problem to get their scattering states
- If we are interested in elastic crosssection then inelastic channels happen as a loss of flux
- In some situation, the coupling to inelastic channels can be effectively accounted by introducing an imaginary potential to reduce the flux

$$
V(r) \longrightarrow V(r)+i W(r)
$$

Laboratoire de Physique des 2 Infinis

Optical potential

THE IDEA BEING OPTICAL POTENTIAL

Irène Joliot-Curie des 2 Infinis

Scattering equation with an imaginary potential

$$
\left(\Delta+k^{2}-\frac{2 \mu}{\hbar^{2}}(V(\vec{r})+i W(\vec{r})) \varphi(\vec{r})=0\right.
$$

Let's check that some flux is lost:
Current is $\vec{J}=\frac{\hbar}{2 \mu i}\left((\varphi)^{*} \nabla \varphi-\varphi \nabla(\varphi)^{*}\right)$
Density is $\rho=\varphi^{*} \varphi$

$$
\left.\begin{array}{l}
\varphi^{*}(\vec{r}) \times\left(\Delta+k^{2}-\frac{2 \mu}{\hbar^{2}}(V(\vec{r})+i W(\vec{r})) \varphi(\vec{r})=0\right. \\
\varphi(\vec{r}) \mathbf{X}\left(\Delta+k^{2}-\frac{2 \mu}{\hbar^{2}}(V(\vec{r})-i W(\vec{r})) \varphi^{*}(\vec{r})=0\right.
\end{array}\right\} \hbar \vec{\nabla} \cdot \vec{\jmath}=2 W(r) \rho(\mathrm{r})
$$

If $W(r)<0$ Local reduction of the flux

IMAGINARY POTENTIAL: INFLUENCE ON THE CROSSSECTION

With start with the conservation of matter

$$
\frac{d \rho}{d t}=-\vec{\nabla} \cdot \vec{J}
$$

Which integral form is

$$
\frac{d}{d t} \int \rho d V=-\int \vec{\nabla} \cdot \vec{J} d V=\int \vec{J} \cdot \vec{n} d S
$$

From the previous result $[\hbar \vec{\nabla} \cdot \vec{J}=2 W(r) \rho(r)]$ we immediately obtained the lost outgoing flux $-\frac{2}{\hbar} \int d^{3} r W(r) \rho(\mathrm{r})$, then the absorption cross-section reads

$$
\sigma_{\mathrm{abs}}=-\frac{2}{\hbar v} \int d^{3} r W(r) \rho(\mathrm{r})
$$

Which decomposes on partial waves

$$
\sigma_{\mathrm{abs}}=-\frac{2}{\hbar v} \frac{4 \pi}{k^{2}} \sum(2 l+1) \int\left|u_{l}(r)\right|^{2} W(r) d r
$$

To compare with

$$
\frac{\pi}{k^{2}} \sum(2 l+1)\left(1-\left|\tilde{S}_{\alpha, l}\right|^{2}\right)
$$

PHYSICAL INTERPRETATION : MEAN-FREE PATH

Irène Joliot-Curie

Non-elastic channels

1. The optical potential should mimic rather complex phenomena in an effective way
2. It should be related to the direct inmedium interaction of nucleons
3. It should also depend on the incident energy (an effect of the Pauli principle that screens low-energy collisions)

PHYSICAL INTERPRETATION : MEAN-FREE PATH

Definition:

Mean-free path: average distance traveled by a nucleon without making collisions with other nucleons

Connection between the optical potential and the mean-free path

Suppose a uniform system with constant potential $V=-\left(V_{0}+i W_{0}\right)$, the w.f. reads $\Psi(\vec{r})=e^{i \boldsymbol{k} \cdot r}$
With $\kappa^{2}=\frac{2 \mu}{\hbar^{2}}\left(E+V_{0}+i W_{0}\right) \quad$ At high energy $\quad W_{0} \ll E+V_{0}$
$\left.\hbar_{\kappa=\left(\frac{2 \mu}{\hbar^{2}}\left(E+V_{0}\right)\right)^{2}\left(1+\frac{1}{2} \frac{i W_{0}}{E+V_{0}}\right)}\right)$

$$
\Psi(\vec{r})=e^{i \boldsymbol{k} \cdot \boldsymbol{r}} e^{-\frac{r}{\lambda}}
$$

With

$$
\frac{\hbar^{2} k^{2}}{2 \mu}=E+V_{0}, \quad \lambda=\frac{\sqrt{\frac{2}{\mu}} \sqrt{E+V_{0}}}{\left|W_{0}\right|}
$$

At very low energy, essentially the average mean-field is felt by the incident nucleon

WHY THE INDEPENDENT PARTICLE WORKS ?

Irène Joliot-Curie

$$
\Delta k=0.6 k F
$$

(

Pauli blocking effect strongly "inhibits" in-medium collisions

ILLUSTRATION OF OPTICAL POTENTIAL IN NUCLEONNUCLEUS CASE

Example of Phenomenological optical potential (From E. Bauge, EJC 2007)

$$
\begin{gathered}
V(r, E)=V(E) f\left(r, R_{v}, a_{v}\right)+4 V_{D}(E) f^{\prime}\left(r, R_{v_{D}}, a_{v_{D}}\right) \\
W(r, E)=W(E) f\left(r, R_{w}, a_{w}\right)+4 W_{D}(E) f^{\prime}\left(r, R_{w_{D}}, a_{w_{D}}\right)
\end{gathered}
$$

$$
\begin{gathered}
f(r, R, a)=\frac{1}{1+e^{\frac{r-R}{a}}} \\
f^{\prime}\left(r, R_{w_{D}}, a_{w_{D}}\right)=\frac{d}{d r} f(r, R, a)
\end{gathered}
$$

> The parameters are varied until agreement with experiments for total, elastic and absorption cross-section is reached

ILLUSTRATION OF OPTICAL POTENTIAL IN NUCLEONNUCLEUS CASE

\qquad

Example of Phenomenological optical potential (From E. Bauge, EJC 2007)

EXAMPLE OF DIFFERENTIAL CROSS-SECTION SOME REMARKS

Differential neutron cross-sections on ${ }^{90} \mathrm{Zr}$ for a beam between 1.5 MeV to 24 MeV

(From E. Bauge, Ecole Joliot-Curie 2007)

EXAMPLE OF DIFFERENTIAL CROSS-SECTION SOME REMARKS AND CURRENT TREND

> The optical potential is a powerful model to reproduce data
> However, it remains a global fit of the experimental data
> It does in general not tell much about the underlying physical process
> The actual tendency is to provide as much as possible microscopic information on the physical processes leading to non-elastic channels (excitation of target and projectile, direct reactions,)
> One standard systematic theory is the Feshbach theory of nuclear reactions + Brückner Hartree-Fock approach (G-matrix)

The coupling induces an

Relevant space of degrees of freedom (DoF) Elastic channels
 effective imaginary potential for P

BACK TO THE SCATTERING PROBLEM WITH NONELASTIC CHANNELS

In some cases, it is possible to mimic inelastic channels by an optical potential

$$
1-\left|\tilde{S}_{\alpha, l}\right|^{2}=-\frac{8}{\hbar v} \int\left|u_{l}(r)\right|^{2} W(r) d r
$$

$$
\psi_{k}^{+}(\vec{r}) \rightarrow\left(e^{i \vec{k} \cdot \vec{r}} \Psi_{a} \Psi_{A}+\sum_{\beta} \tilde{f}_{\beta}(\Theta, \varphi) \frac{e^{i k_{\beta} r}}{r} \Psi_{i_{\beta}} \Psi_{I_{\beta}}\right)
$$

$$
\frac{d \sigma_{\beta}}{d \Omega}=\frac{v_{\beta}}{v}\left|f_{\beta}(\Theta, \varphi)\right|^{2}=\left|\tilde{f}_{\beta}(\Theta, \varphi)\right|^{2}
$$

For $E \sim \mathrm{MeV}$, first inelastic channel is

$$
a+A \rightarrow a^{*}+A^{*}
$$

In that case both entrance and exit channels are a solution of the same scattering equation that is:

SIMPLIFIED SITUATION

Inelastic

No mass partition No nucleon transfer

$$
H=H_{a}+H_{A}-\frac{\hbar^{2}}{2 \mu_{\alpha}} \Delta_{\vec{r}_{\alpha}}^{2}+V\left(r_{\alpha}\right)
$$

The scattering problem can be solved by writing the eigenstates as

$$
H \Psi=E \Psi \text { with } \Psi=\sum_{x=\{i, j\}} \chi_{x}\left(\boldsymbol{r}_{\alpha}\right) \Psi_{a}^{i} \Psi_{A}^{j}
$$

$$
\sum_{x}\left[\left(E_{a}^{i}+E_{A}^{j}-E\right)-\frac{\hbar^{2}}{2 \mu_{\alpha}} \Delta_{r_{\alpha}}^{2}+V\left(r_{\alpha}\right)\right] \chi_{x}\left(\boldsymbol{r}_{\alpha}\right) \Psi_{a}^{i} \Psi_{A}^{j}=0
$$

$$
\checkmark
$$

$$
\begin{array}{r}
{\left[\nabla_{\alpha}^{2}-U_{x, x}\left(\mathbf{r}_{\alpha}\right)+k_{x}^{2}\right] \chi_{x}\left(\boldsymbol{r}_{\alpha}\right)=\sum_{x^{\prime} \neq x} U_{x, x^{\prime}}\left(\mathbf{r}_{\alpha}\right) \chi_{x^{\prime}}\left(\boldsymbol{r}_{\beta}\right)} \\
k_{x}^{2}=\frac{2 \mu_{\alpha}}{\hbar^{2}}\left(E-E_{a}^{i}-E_{A}^{j}\right)
\end{array}
$$

$$
U_{x, x^{\prime}}\left(\mathbf{r}_{\alpha}\right)=\frac{2 \mu_{\alpha}}{\hbar^{2}}\left\langle\Psi_{a}^{i} \Psi_{A}^{j}\right| V_{\alpha}\left|\Psi_{a}^{i} \Psi_{A}^{j}\right\rangle=\frac{2 \mu_{\alpha}}{\hbar^{2}} \iint\left(\Psi_{a}^{i}\right)^{*}\left(\boldsymbol{\tau}_{a}\right)\left(\Psi_{A}^{j}\right)^{*}\left(\boldsymbol{\tau}_{A}\right) V_{\alpha} \Psi_{a}^{i}\left(\boldsymbol{\tau}_{a}\right) \Psi_{A}^{j}\left(\boldsymbol{\tau}_{a}\right)
$$

COUPLED-CHANNEL METHOD : SOME REMARKS

$$
\left[\nabla_{\alpha}^{2}-U_{x, x}\left(r_{\alpha}\right)+k_{x}^{2}\right] \chi_{x}\left(r_{\alpha}\right)=\sum_{x^{\prime} \neq x} \chi_{x^{\prime}}\left(r_{\alpha}\right) U_{x, x^{\prime}}\left(r_{\alpha}\right)
$$

Diagonal: elastic channels

Off-diagonal: coupling to other channels
$>$ The number of channels is a priori infinite then the method can be combined with optical potential
$>$ Different mass partitions can be included (nucleons transfer) at the price of increasing the number of channel and of computing more terms related to overlaps between mass partitions
> Computation of potential acting on the relative motion is tedious

A SCHEMATIC VIEW OF THE SCATTERING PROCESS

We search for a specific solution of the scattering problem

$$
(H-E)|\Psi\rangle=0
$$

Compatible with the known incoming wave function $\left|\varphi_{i}\right\rangle$ (a plane wave). This w.f. $\left(\left|\psi_{k}^{+}\right\rangle\right)$writes

$$
\left.\left.e^{i \vec{k} \cdot \vec{r}} \Psi_{a}^{+}\right\rangle=\Psi_{A}^{0} \Psi_{\vec{k}}^{0}\right\rangle\left\langle i_{\vec{k}} \mid \psi_{\boldsymbol{k}}^{+}\right\rangle+\sum\left|f_{\vec{k}^{\prime}}\right\rangle\left\langle f_{\vec{k}^{\prime}} \mid \psi_{\boldsymbol{k}}^{+}\right\rangle \quad \frac{d \sigma_{i \rightarrow f}}{d \Omega} \propto\left|\left\langle f_{\vec{k}^{\prime}} \mid \psi_{\boldsymbol{k}}^{+}\right\rangle\right|^{2}
$$

SCATTERING PROCESS

$$
\begin{gathered}
H=H_{a}+H_{A}-\frac{\hbar^{2}}{2 \mu_{\alpha}} \Delta_{\vec{r}_{\alpha}}^{2}+V\left(r_{\alpha}\right) \\
|\alpha\rangle=|a+B\rangle
\end{gathered}
$$

β : exit channels with change of the chemical potential composition
α : entrance, elastic

$$
\begin{gathered}
H=H_{b}+H_{C}-\frac{\hbar^{2}}{2 \mu_{\beta}} \Delta_{\vec{r}_{\beta}}^{2}+V\left(r_{\beta}\right) \\
|\beta\rangle=|b+C\rangle
\end{gathered}
$$

We have to deal with non orthonormal and overcomplete basis $\{|\alpha\rangle,|\beta\rangle\}:\langle\alpha \mid \beta\rangle=\delta_{\alpha \beta}$

The strategy is just the same taking care of the non-orthogonality

$$
\begin{gathered}
\left|\psi_{\boldsymbol{k}, \alpha}^{+}\right\rangle=\sum\left|\varphi_{\boldsymbol{k}, \beta}\right\rangle\left\langle\varphi_{\boldsymbol{k}, \beta} \mid \psi_{\boldsymbol{k}, \alpha}^{+}\right\rangle \\
\left.\left|f_{\beta \alpha}\right|^{2}=\left|f_{\alpha \rightarrow \beta}\right|^{2}=\left|\left\langle\varphi_{\boldsymbol{k}, \beta}\right| V\right| \psi_{\boldsymbol{k}, \alpha}^{+}\right\rangle\left.\right|^{2} \\
\frac{d \sigma_{\beta \alpha}}{d \Omega}=\frac{v_{\beta}}{v_{\alpha}}\left|f_{\beta \alpha}(\Theta, \varphi)\right|^{2} \\
\begin{array}{l}
\text { Probability to } \\
\text { piven the } \\
\text { entrance channel }
\end{array} \\
\frac{d \sigma_{\beta \alpha}}{d \Omega}=\frac{\mu_{\alpha} \mu_{\beta}}{\left(2 \pi \hbar^{2}\right)^{2}}\left(\frac{k_{\beta}}{k_{\alpha}}\right)\left|T_{\beta \alpha}\left(\boldsymbol{k}_{\alpha}, \boldsymbol{k}_{\beta}\right)\right|^{2}
\end{gathered}
$$

SCATTERING AMPLITUDE FROM LS EQUATION ETC.

Irène Joliot-Curie

The scattering states are the solution of [prior form]

$$
\left[\nabla_{\beta}^{2}+k_{\beta}^{2}\right] \chi_{\alpha}\left(\boldsymbol{r}_{\alpha}\right)=\Omega_{\alpha}\left(\boldsymbol{r}_{\alpha}\right)
$$

As before the solution is formally

$$
\begin{array}{r}
\left\langle\varphi_{k, \beta} \mid \chi_{k, \alpha}^{+}\right\rangle=\frac{e^{i k_{\alpha} \cdot \vec{r}}}{(2 \pi)^{3 / 2}} \delta_{\alpha, \beta}-\frac{2 \mu_{\alpha}}{\hbar^{2}} \int d^{3} r_{\beta}{ }^{\prime} \frac{e^{i k_{\beta}\left|r_{\beta}-r_{\beta}^{\prime}\right|}}{4 \pi\left|r_{\beta}-r_{\beta}^{\prime}\right|}\left\langle\varphi_{k, \beta}\right| \Omega_{\alpha}\left(\vec{r}_{\beta}^{\prime}\right)\left|\chi_{k, \alpha}^{+}\right\rangle \\
=T_{\beta \alpha}
\end{array}
$$

This is the Lippmann-Schwinger equation

Born approximation

$$
\chi_{\boldsymbol{k}, \alpha}^{+}\left(\boldsymbol{r}_{\alpha}\right)=\varphi_{\boldsymbol{k}, \boldsymbol{\alpha}}\left(\boldsymbol{r}_{\alpha}\right)=\frac{e^{i \vec{k}_{\alpha} \cdot \vec{r}_{\alpha}}}{(2 \pi)^{3 / 2}}
$$

$$
\begin{aligned}
& {\left[\nabla_{\beta}^{2}-U_{\alpha, \alpha}\left(\mathbf{r}_{\alpha}\right)+k_{\beta}^{2}\right] \chi_{\alpha}\left(\boldsymbol{r}_{\alpha}\right)=\Omega_{\alpha}\left(\boldsymbol{r}_{\alpha}\right)} \\
& {\left[\nabla_{\beta}^{2}-U_{\alpha, \alpha}\left(\mathbf{r}_{\alpha}\right)+k_{\beta}^{2}\right] \chi_{\beta}^{-}\left(\boldsymbol{r}_{\alpha}\right)=0} \\
& T_{\beta \alpha}=\left\langle\chi_{\boldsymbol{k}, \beta}^{-}\right| \Omega_{\alpha}\left(\vec{r}_{\beta}^{\prime}\right)\left|\chi_{\boldsymbol{k}, \alpha}^{+}\right\rangle
\end{aligned}
$$

$>$ The theory of scattering by a general potential is rather cumbersome with many degrees of sophistication
$>$ But it is used in many area of physics
> Normally particles have internal DoF, are often fermions and have spin/isospin that recouple with angular momentum/total isospin.
$>$ This makes the theory of scattering even more technical
$>$ Without using it we forget almost as fast as we learn this theory
> Please remember more the general strategy/physical meaning than the technical details

$$
\left.\left|\Psi_{\mathrm{in}}^{+}\right\rangle=|\mathrm{in}\rangle\left\langle\mathrm{in} \mid \Psi_{\mathrm{in}}^{+}\right\rangle+\sum \mid \text { out }\right\rangle\left\langle\text { out } \mid \Psi_{\mathrm{in}}^{+}\right\rangle
$$

