

Master NPAC: An introduction to the theory of nuclear reactions

Guillaume Hupin

IPN Orsay

prepared with inputs of D. Lacroix

Lecture 3 : Formal theory of nuclear scattering by a general potential. Inelastic channels. Illustration with the nucleon-nucleus reaction.

GENERALITIES ON THE NUCLEON-NUCLEUS COLLISIONS

When the incident energy permits it, two or more reaction channels are opened, e.g.

2

THIS SITUATION IS MUCH MORE CRITICAL AS $A \gg 1$

Laboratoire de Physique des 2 Infinis

©2004 Thomson - Brooks/Cole

Neutron capture followed by fission

The understanding of reaction channels competition is crucial for instance to predict the production of long-lived radioactive isotopes.

« SIMPLE CASE »: REMINDER

NUCLEON-NUCLEUS COLLISIONS THE MANY-FACETS OF A NUCLEON-INDUCED REACTION

WHAT ARE THE NEW ASPECTS COMPARED TO THE BINARY ELASTIC CASE

- The diffusion is made by an extended source, i.e. the target/projectile have an internal degrees of freedom [≠point like]
 - A general scheme should be developed
- 2. We need to describe the internal structure and excitations of the target/projectile
 - Exciting the target will induce an energy loss of projectile kinetic energy – inelastic scattering
- 3. The different channels compete and will interfere leading to modified cross-sections
 - We need to develop a general scheme able to describe the competition between several channels
 - > Or effectively accounting for reduction to one channel contribution to σ

Laboratoire de Physique des 2 Infinis

A few formal aspects

The goal 1) general scheme with approximation 2) effective description for an ad hoc modeling

The general form Schrödinger equation

(1)
$$\rightarrow (\Delta + k^2)\varphi(\vec{r}) = \frac{2\mu}{\hbar^2}V(\vec{r})\varphi(\vec{r})$$

We know the solution for V = 0

$$(\Delta + k^2)\varphi_0(\vec{r}) = 0$$
 where $\varphi_0(\vec{r}) = \frac{1}{(2\pi)^{3/2}}e^{i\vec{k}\cdot\vec{r}}$

We solve the differential equation with the green function method

 $(\Delta + k^2)\varphi_0(\vec{r}) = 0$

The free particle green function is defined by

$$(\Delta + k^2)G_0(\vec{r} - \vec{r}') = \delta(\vec{r} - \vec{r}') \quad \bullet =$$

The general solution of (1) is

$$\varphi^{\pm}(\vec{r}) = \varphi_0(\vec{r}) + \frac{2\mu}{\hbar^2} \int d^3r' G_0^{\pm}(\vec{r} - \vec{r}') V(\vec{r}') \varphi^{\pm}(\vec{r}')$$

Called "Integral form of the diffusion equation"

with $E = \frac{\hbar^2 k^2}{2\mu}$

This equation has two solutions $G_0^{\pm}(\vec{r} - \vec{r}') = -\frac{e^{\pm ik|r-r'|}}{4\pi|r-r'|}$ are called outgoing incoming Green functions

We can also defined the full green function $G(\vec{r} - \vec{r}')$, solution of $\left(\Delta + k^2 - \frac{2\mu}{\hbar^2}V(\vec{r})\right)G =$ $\delta(\vec{r} - \vec{r}')$ then we have $\varphi =$ $[1 - GV]\varphi_0$ "matrix form"

FORMAL ASPECTS

 $\varphi^{\pm}(\vec{r}) = \varphi_0(\vec{r}) + \frac{2\mu}{\hbar^2} \int d^3r' G_0^{\pm}(\vec{r} - \vec{r}') V(\vec{r}') \varphi^{\pm}(\vec{r}')$ des 2 Infinis Recovering large distance asymptotic For the diffusion scattering problem $\psi_{k}^{\pm}(\vec{r}) = \frac{e^{i\vec{k}\cdot\vec{r}}}{(2\pi)^{3/2}} - \frac{2\mu}{\hbar^{2}} \int d^{3}r' \frac{e^{\pm ik|r-r'|}}{4\pi|r-r'|} V(\vec{r}')\psi_{k}^{\pm}(\vec{r}')$ This is the Lippmann-Schwinger equation At large distance $(r \gg 1)$: $|\vec{r} - \vec{r}'| \approx r - \vec{e}_r \cdot \vec{r}' + \cdots$ $\frac{e^{\pm ik|r-r'|}}{|r-r'|} \cong \frac{e^{\pm ikr}}{r} e^{\mp i\vec{k}'\cdot\vec{r}'} \quad \text{with } \vec{k}' = k\vec{e}_r$ k = k'This can be cast into $A\left(e^{i\vec{k}\cdot\vec{r}} + f(\Theta,\varphi)\frac{e^{ikr}}{r}\right)$ for $\psi_k^+(\vec{r})$ if r $f(\theta, \varphi) = -2\pi^2 \frac{2\mu}{\hbar^2} \int d^3r' \frac{e^{-ik' \cdot \vec{r}'}}{(2\pi)^{3/2}} V(\vec{r}') \psi_k^+(\vec{r}')$ e_r Interaction region $V(\vec{r}') \neq 0$

CROSS-SECTION AND T-MATRIX

From

$$f(\theta, \varphi) = -2\pi^2 \frac{2\mu}{\hbar^2} \int d^3 r' \frac{e^{-i\vec{k}' \cdot \vec{r}'}}{(2\pi)^{3/2}} V(\vec{r}') \psi_k^+(\vec{r}')$$

We recognize

$$T(\theta,\varphi) = -2\pi^2 \frac{2\mu}{\hbar^2} \langle \varphi_{0,\mathbf{k}'} | V | \psi_{\mathbf{k}}^+ \rangle$$

We deduce the differential cross-section as:

$$\frac{d\sigma(\theta,\varphi)}{d\Omega} = |f(\theta,\varphi)|^2 = \left(2\pi^2 \frac{2\mu}{\hbar^2}\right)^2 \left|\left\langle\varphi_{0,k'}\right|V\left|\psi_k^+\right\rangle\right|^2 = \left(2\pi^2 \frac{2\mu}{\hbar^2}\right)^2 \left|T_{k',k}\right|^2$$

 $T_{k',k}$ is the on-shell [k = k'] T-matrix element and relates to the S-matrix by $S_{k',k} = \delta(\vec{k} - \vec{k'}) - 2\pi\delta(E_k - E_{k'})T_{k',k}$

From the definition of $\psi_{k}^{\pm}(\vec{r})$, we notice that $S_{k',k} = \langle \psi_{k'}^{-} | \psi_{k}^{+} \rangle$

T-MATRIX, PHASE SHIFTS AND POTENTIAL

Starting from $S_{\mathbf{k}',\mathbf{k}} = \delta\left(\vec{k} - \vec{k}'\right) - 2\pi\delta(E_{\mathbf{k}} - E_{\mathbf{k}'})T_{\mathbf{k}',\mathbf{k}}$

We can perform a partial wave decomposition to obtain

 $S_{I} = 1 - 2\pi i T_{I}(E)$

So $T_l(E) = -\frac{1}{\pi} e^{i\delta_l(E)} \sin \delta_l(E)$. Similarly

$$T_l(E) = \frac{2\mu}{\pi\hbar^2} \int dr \ r J_l(kr) \ V(r) u_l(r)$$

So we have

$$e^{i\delta_l(E)}\sin\delta_l(E) = -\frac{2\mu}{\hbar^2}\int dr \, rJ_l(kr) \, V(r)u_l(r)$$

des 2 Infinis

A SCHEMATIC VIEW OF THE SCATTERING PROCESS

We have solved

$$(\Delta + k^2)\varphi(\vec{r}) = \frac{2\mu}{\hbar^2} V(\vec{r})\varphi(\vec{r})$$

And kept only the solution ψ_k^+ corresponding to an incoming plane wave of momentum \vec{k}

At large distance, where reaction channels are defined, we find:

$$\psi_{\mathbf{k}}^{+}(\vec{r}) \xrightarrow{\infty} A\left(e^{i\vec{k}\cdot\vec{r}} + f(\Theta,\varphi)\frac{e^{ikr}}{r}\right)$$

This can be cast into the form

$$|\psi_{k}^{+}\rangle = |i_{\vec{k}}\rangle\langle i_{\vec{k}}|\psi_{k}^{+}\rangle + \sum |f_{\vec{k}'}\rangle\langle f_{\vec{k}'}|\psi_{k}^{+}\rangle$$

So that the probability to populate a given exit channel from the entrance channel is $|f_{i\to f}|^2 = |\langle f_{\vec{k}'} | \psi_k^+ \rangle|^2$, such that the differential cross section is

$$\frac{d\sigma_{i\to f}}{d\Omega} \propto \left| \left\langle f_{\vec{k}'} | \psi_k^+ \right\rangle \right|^2$$

PRACTICAL INTEREST OF THE LIPPMANN-SCHWINGER EQUATION

Lippmann-Schwinger equation [in any of their form] are particularly useful:

$$\varphi^{\pm}(\vec{r}) = \varphi_0(\vec{r}) + \frac{2\mu}{\hbar^2} \int d^3r' G_0^{\pm}(\vec{r} - \vec{r}') V(\vec{r}') \varphi^{\pm}(\vec{r}')$$

The equation is self consistent and can be used to write φ^{\pm} as a series [perturbative expansion with *V*]

Illustration: perturbative expansion

- 1. At zeroth order in V(r), the scattering wavefunction translates to unperturbed incident plane wave that is $\varphi^{\pm}(\vec{r}) = \varphi_0(\vec{r})$
- 2. At first order in V, we find

$$\varphi_{(1)}(\vec{r}) = \varphi_0(\vec{r}) + \frac{2\mu}{\hbar^2} \int d^3r' G_0^{\pm}(\vec{r} - \vec{r}') V(\vec{r}') \varphi_{(0)}(\vec{r}')$$

3. And then at second order

$$\varphi_{(2)}(\vec{r}) = \varphi_0(\vec{r}) + \frac{2\mu}{\hbar^2} \int d^3r' G_0^{\pm}(\vec{r} - \vec{r}') V(\vec{r}') \varphi_{(1)}(\vec{r}')$$

REPRESENTATION OF THE BORN SERIES

Formally the series writes

$$|\varphi_{\boldsymbol{k}}^{+}\rangle = |\varphi_{0,\boldsymbol{k}}\rangle + \frac{2\mu}{\hbar^{2}}G_{0}V|\varphi_{0,\boldsymbol{k}}\rangle + \left(\frac{2\mu}{\hbar^{2}}\right)^{2}G_{0}VG_{0}V|\varphi_{0,\boldsymbol{k}}\rangle + \dots = \sum\left(\frac{2\mu}{\hbar^{2}}G_{0}V\right)^{n}|\varphi_{0,\boldsymbol{k}}\rangle$$

Writing the scattering amplitude expressed as a Born series expansion we have

$$f(\Theta, \varphi) = -2\pi^2 \left\langle \varphi_{0, \mathbf{k}'} \middle| V \sum \left(\frac{2\mu}{\hbar^2} G_0 V \right)^n \middle| \varphi_{0, \mathbf{k}} \right\rangle$$

We can understand that the unperturbed plane wave undergoes a sequences of multiples scattering events from inside the potential region:

But the series may not converged until all terms are including if the potential is strong enough

THE BORN APPROXIMATION (I.E. FIRST ORDER)

The leading term of the Born series is

 $f(\Theta, \varphi) = -2\pi^2 \left\langle \varphi_{0, \mathbf{k}'} \middle| \frac{2\mu}{\hbar^2} V \middle| \varphi_{0, \mathbf{k}} \right\rangle$

Unperturbed w.f.

 $T_{k',k}$

Which gives

$$\frac{d\sigma(\theta,\varphi)}{d\Omega} = |f(\theta,\varphi)|^2 \propto \langle \varphi_{0,\mathbf{k}'} | V | \varphi_{0,\mathbf{k}} \rangle$$

At first order, the fermi golden rule is equivalent Initial state to the born approximation

$$\Gamma_{k \to k'} = \sum_{k' \in d\Omega} \frac{2\pi}{\hbar} |\langle \mathbf{k}' | V | \mathbf{k} \rangle|^2 \delta(E_k - E_{k'}) \text{ Density of state}$$

$$= \frac{2\pi}{\hbar} |\langle \mathbf{k}' | V | \mathbf{k} \rangle|^2 g(E_k)$$

Similarly, we can get the phase shift of the Born approximation

$$e^{i\delta_l(E)}\sin\delta_l(E) = -\frac{2\mu}{\hbar^2}\int dr \, r^2 J_l(kr)^2 V(r)$$

In particular it tells us that $sign(V) = sign(\delta)$

Final states

EXPLICIT FORM OF THE CROSS SECTION AT THE BORN APPROXIMATION

Starting from

$$f(\Theta,\varphi) = -2\pi^2 \left\langle \varphi_{0,\mathbf{k}'} \Big| \frac{2\mu}{\hbar^2} V \Big| \varphi_{0,\mathbf{k}} \right\rangle$$

We immediately obtain

$$f_{\rm Born}(\Theta,\varphi) = -2\pi^2 \frac{2\mu}{\hbar^2} \int d^3r' \frac{e^{i(\vec{k}-\vec{k}')\cdot\vec{r}'}}{(2\pi)^3} V(\vec{r}')$$

 \vec{q} is the momentum transfer to the target by the projectile

Which is nothing but the 3D Fourier transform of the potential

If the potential is spherical symmetric

$$f_{\rm Born}(\Theta,\varphi) = -\frac{2\mu}{\hbar^2} \int r'^2 dr' \frac{\sin(qr')}{qr'} V(r')$$

With $q^2 = k^2 + k'^2 - 2kk'\cos\theta$

BORN APPROXIMATION: APPLICATION TO THE ELECTRON SCATTERING CASE

Laboratoire de Physique des 2 Infinis Χ b d_0 e db θ b(o φ Ζ dσ $d\Omega$ 10⁵ 10⁴ Rutherford cross section 10³ dN Koll cross sec d cos 0 10^{2} Hofstadter's electron scattering Scale data dropped below that expected arbitrary for a point nucleus, indicating 10 structure of the nucleus. 1 10 -0.5 -1.0 0.0 0.5 1.0

cos θ

Classical approximation to the scattering with relativistic correction

$$\left(\frac{d\sigma}{d\Omega}\right)_{\text{Mott}} \simeq \left(\frac{d\sigma}{d\Omega}\right)_{\text{Ruth}} \cos^2\frac{\Theta}{2}$$

BORN APPROXIMATION: APPLICATION TO THE ELECTRON SCATTERING CASE

Laboratoire de Physique des 2 Infinis e^{-} db θ b(o Ζ dσ $d\Omega$ V(r) $-V_0 e^{-\alpha r}/r$ Yukawa potential

Quantum Scattering by a point like particle with a Yukawa or Coulomb potential

$$f_{\rm Born}(\Theta,\varphi) = -\frac{2\mu}{\hbar^2} \int r'^2 dr' \frac{\sin(qr')}{qr'} V(r')$$

If we assume that $V(r) = -V_0 \frac{e^{-\alpha r}}{r}$ then $f_{\text{Born}}(\Theta, \varphi) = \frac{2\mu}{\hbar^2} V_0 \frac{1}{\alpha^2 + q^2}$

For the Coulomb case we take the limit $\alpha \rightarrow 0$, and in the elastic case k = k' thus

$$q^2 = 2k^2(1 - \cos\theta) = 4k^2 \sin^2\theta / 2$$

We recover the classical formula

$$\frac{d\sigma}{d\Omega} = \left(\frac{Z_1 Z_2 e^2}{8\pi\varepsilon_0 m v_0^2}\right)^2 \csc^4\left(\frac{\theta}{2}\right)^2$$

BORN APPROXIMATION: APPLICATION TO THE ELECTRON SCATTERING CASE

At $r \gg r'$, the potential felt by e^- is given by the convolution product between the charged density of the nucleus (proton density) and the coulomb potential

$$V(r) = Z_1 e^2 \int d^3 r' \frac{\rho(\vec{r}')}{|\vec{r}' - \vec{r}|} \qquad \text{Note } \int d^3 r' \rho(\vec{r}') = Z$$

Since the Born scattering amplitude is a Fourier transform of the potential the cross section is a product of the charged density FT and the Coulomb potential FT (i.e. Rutherford) that is

$$\frac{d\sigma}{d\Omega} = \left(\frac{d\sigma}{d\Omega}\right)_{\text{Mott}} [F(q)]^2$$

F(q) is called the form factor

At low momentum transfer,
$$F(q) \sim 1 - \frac{1}{6}q^2 \langle r_{ch}^2 \rangle + \cdots$$

Note that

$$\lambda_{\text{Broglie}}^{e^-} \cong \frac{5 \cdot 10^3}{\sqrt{E}} \text{ fm}$$

 $\lambda_{\text{Broglie}}^N \cong \frac{4,54}{\sqrt{E}} \text{ fm}$

ELECTRON SCATTERING, INCOMPRESSIBILITY AND SATURATION

ELECTRON SCATTERING, INCOMPRESSIBILITY AND SATURATION

SYSTEMATIC OBSERVATION OF CHARGE DENSITY

Systematic of nuclear charge density

Oscillations probes shell effects and independent particle picture of the nucleus

DEPARTURE OF THE INDEPENDENT PARTICLE PICTURE

FIG. 3. Density difference between ²⁰⁶Pb and ²⁰⁵Tl. The experimental result of Cavendon *et al.* (1982) is given by the error bars; the prediction obtained using Hartree-Fock orbitals with adjusted occupation numbers is given by the curve. The systematic shift of 0.0008 fm⁻³ at $r \le 4$ fm is due to deficiencies of the calculation in predicting the core polarization effect.

From Pandharipande *et al*, Rev. Mod. Phys. 69, 981

SOME CONCLUSIONS ON COULOMB INTERACTION WITH NUCLEI

From the simplest version Coulomb scattering, we have considered a series of reaction models of increasing complexity

A VARIANT OF THE BORN APPROXIMATION: THE DISTORTED WAVE-BORN APPROXIMATION (DWBA)

In the standard Born Approximation

$$\chi_k^+(\vec{r}) = \frac{e^{i\vec{k}_{\alpha}\cdot\vec{r}}}{(2\pi)^{3/2}} + \frac{2\mu}{\hbar^2} \int d^3r' \frac{e^{ik_\beta|r-r'|}}{4\pi|r-r'|} V(\vec{r}')\chi_k^+(\vec{r}')$$

Systematic constructive treatment

$$f = -\frac{2\mu}{4\pi\hbar^2} \langle \mathbf{k}' | V + V G_0 V + \dots | \chi_k^+$$
$$f_{\text{Born}} = -\frac{2\mu}{4\pi\hbar^2} \langle \mathbf{k}' | V | \mathbf{k} \rangle$$

In some cases, the free-wave approximation is rather poor starting point.

Suppose $V = V_{MF} + V_{res}$ and the solutions of $(\nabla^2 + k^2 - V_{MF})\chi_1(\mathbf{k}, \mathbf{r}) = 0$ are known/computable

One can show
$$f = f_1 - \frac{2\mu}{4\pi\hbar^2} \int d^3 r' \chi_1^-(\mathbf{k}, \vec{r}) V_{res}(\vec{r}') \chi_k^+(\vec{r}')$$

The DWBA approximation consists in:

$$\chi_k^+ \longrightarrow \chi_1^+(\boldsymbol{k}, \boldsymbol{r})$$
 then $f = f_1 - \frac{2\mu}{4\pi\hbar^2} \langle \chi_1^- | \boldsymbol{V} | \chi_1^+ \rangle$

Laboratoire de Physique des 2 Infinis

Competition between different channels and internal structure of particles

GENERALISATION TO MULTICHANNEL DECOMPOSITION

SCATTERING PROBLEM OF COMPOSITE SYSTEMS

SCATTERING PROBLEM OF COMPOSITE SYSTEMS

 $\frac{d\sigma_{\beta}}{d\Omega} = \frac{\nu_{\beta}}{\nu} \left| \breve{f}_{\beta}(\Theta, \varphi) \right|^{2}$ \vec{k}_{β} $|i_{\beta}+I_{\beta}\rangle$ \vec{k} $|a + A\rangle$

Channels will all interfere...

 $|a + A\rangle$ Elastic channel with $\frac{v_{\beta}}{v} = 1$, always opens

 $|a^* + A^*\rangle$ Inelastic scattering $\frac{v_\beta}{v} \neq 1$, Energetically opens if $E_{\text{c.m.}}$ is greater than the reaction threshold

 $\begin{array}{c} |b + C \rangle \\ |b + d + C \rangle \\ \end{array}$ All other reaction channels energetically allowed $\left(\frac{v_{\beta}}{v} \neq 1\right)$

Laboratoire de Physique des 2 Infinis

 \vec{k}

 $|a + A\rangle$

INFLUENCE OF THE NON-ELASTIC CHANNELS ON CROSS-SECTION

With only elastic channel

$$\psi_{k}^{+}(\vec{r}) \longrightarrow \left(e^{i\vec{k}\cdot\vec{r}} + f(\Theta,\varphi)\frac{e^{ik_{\alpha}r}}{r}\right)$$
$$u_{\alpha,l}(r > R) = A_{\alpha,l}\rho\left(H_{l}^{-}(\rho) - S_{\alpha,l}H_{l}^{+}(\rho)\right)$$

The conservation of the momentum leads to $k = k_{\alpha}$, the conservation of the flux [which implies the unitarity of the S-matrix i.e. $S_{\alpha,l}S_{\alpha,l}^* = 1$] means $S_{\alpha,l} = e^{2i\delta_l}$, $\delta \in \mathbb{R}$

Adding non-elastic channels

 \vec{k}_{α} $|a+A\rangle$

$$u_{\alpha,l}(r > R) = A_{\alpha,l}\rho\left(H_l^-(\rho) - S_{\alpha,l}H_l^+(\rho)\right)$$
$$u_{\beta,l}(r > R) = -A_{\beta,l}\rho S_{\beta,l}H_l^+(\rho)$$

 \vec{k} Where $S_{\beta,l}$ $|a+A\rangle$ energy is c consumed \vec{k}_{β} channels: $|i_{\beta}+I_{\beta}\rangle$

 k_{α} Where $S_{\beta,l} = \sqrt{v_{/v_{\beta}}} \tilde{S}_{\beta,l}$ and $\tilde{S}_{\beta,l} = e^{2i\delta_l}, \delta \in \mathbb{C}$. Total $|a + A\rangle$ energy is conserved but $k_{\beta} \neq k$ due to energy consumed by the Q value. The flux is distributed among channels:

$$S_{\alpha,l}(E)|^{2} + \sum |S_{\beta,l}(E)|^{2} = 1$$

1.0 0.5 0.5 0.5 0 0 0 1 0 0 1 2 3 4 |1-\eta|² $\eta_l = -1 \text{ (maximum scattering)}$

From Bertulani, Introduction to nuclear physics

ELASTIC, REACTION AND TOTAL CROSS SECTION

$$\psi_k^+(\vec{r}) \longrightarrow \left(e^{i\vec{k}.\vec{r}} + \sum \tilde{f}_\beta(\Theta,\varphi) \frac{e^{ik_\beta r}}{r} \right)$$

Elastic channel:

$$\sigma_{\rm el} = \frac{\pi}{k^2} \sum (2l+1) \left| 1 - \tilde{S}_{\alpha,l} \right|^2$$

Inelastic channels:

$$\sigma_{\rm in} = \frac{\pi}{k^2} \sum (2l+1) \left| \tilde{S}_{\beta,l} \right|^2$$

Sum of all inelastic channels (absorption cross-sec.):

$$\sigma_{\rm abs} = \frac{\pi}{k^2} \sum (2l+1)(1 - \left|\tilde{S}_{\alpha,l}\right|^2)$$

from $|S_{\alpha,l}|^2 + \sum |S_{\beta,l}|^2 = 1$, and total cross-section

$$\sigma_{\text{tot}} = \sigma_{\text{el}} + \sigma_{\text{abs}}$$
$$= \frac{2\pi}{k^2} \sum (2l+1)(1 - \text{Re}(\tilde{S}_{\alpha,l}))$$

Laboratoire de Physique des 2 Infinis

ILLUSTRATION WITH THE NUCLEON-NUCLEUS CASE ELASTIC, REACTION AND TOTAL CROSS SECTION

TOWARDS A SIMPLIFIED DESCRIPTION OF THE NUCLEON-NUCLEUS PROBLEM: OPTICAL POTENTIAL

- The inclusion of inelastic channels requires to solve a complex manybody problem.
 Example: We should solve the a+A, C, b+B etc. interacting problem to get their scattering states
- If we are interested in elastic crosssection then inelastic channels happen as a loss of flux
- In some situation, the coupling to inelastic channels can be effectively accounted by introducing an imaginary potential to reduce the flux

$$V(r) \rightarrow V(r) + iW(r)$$

Laboratoire de Physique des 2 Infinis

Optical potential

THE IDEA BEING OPTICAL POTENTIAL

Scattering equation with an imaginary potential

$$\left(\Delta + k^2 - \frac{2\mu}{\hbar^2} (V(\vec{r}) + iW(\vec{r})) \right) \varphi(\vec{r}) = 0$$

Let's check that some flux is lost:

Current is
$$\vec{J} = \frac{\hbar}{2\mu i} ((\varphi)^* \nabla \varphi - \varphi \nabla (\varphi)^*)$$

Density is $\rho = \varphi^* \varphi$

$$\varphi^{*}(\vec{r}) \bigotimes \left(\Delta + k^{2} - \frac{2\mu}{\hbar^{2}} (V(\vec{r}) + iW(\vec{r})) \varphi(\vec{r}) = 0 \right)$$

$$\varphi(\vec{r}) \bigotimes \left(\Delta + k^{2} - \frac{2\mu}{\hbar^{2}} (V(\vec{r}) - iW(\vec{r})) \varphi^{*}(\vec{r}) = 0 \right)$$

$$\hbar \, \vec{\nabla} \cdot \vec{J} = 2W(r)\rho(r)$$

If W(r) < 0 Local reduction of the flux

IMAGINARY POTENTIAL: INFLUENCE ON THE CROSS-SECTION

With start with the conservation of matter

$$\frac{d\rho}{dt} = -\vec{\nabla}\cdot\vec{J}$$

Which integral form is

$$\frac{d}{dt}\int \rho dV = -\int \vec{\nabla} \cdot \vec{J} dV = \int \vec{J} \cdot \vec{n} dS$$

 $1 - \left|\tilde{S}_{\alpha,l}\right|^2 = -\frac{8}{\hbar v} \int |u_l(r)|^2 W(r) dr$

From the previous result $[\hbar \vec{\nabla} \cdot \vec{J} = 2W(r)\rho(r)]$ we immediately obtained the lost outgoing flux $-\frac{2}{\hbar} \int d^3 r W(r)\rho(r)$, then the absorption cross-section reads

$$\sigma_{\rm abs} = -\frac{2}{\hbar v} \int d^3 r W(r) \rho(r)$$

Which decomposes on partial waves

$$\sigma_{\rm abs} = -\frac{2}{\hbar v} \frac{4\pi}{k^2} \sum (2l+1) \int |u_l(r)|^2 W(r) dr$$

To compare with

$$\frac{\pi}{k^2}\sum(2l+1)(1-\left|\tilde{S}_{\alpha,l}\right|^2)$$

PHYSICAL INTERPRETATION : MEAN-FREE PATH

Definition:

Mean-free path: average distance traveled by a nucleon without making collisions with other nucleons

Connection between the optical potential and the mean-free path

Suppose a uniform system with constant potential $V = -(V_0 + iW_0)$, the w.f. reads $\Psi(\vec{r}) = e^{i\boldsymbol{\kappa}\cdot\boldsymbol{r}}$ With $\kappa^2 = \frac{2\mu}{\hbar^2}(E + V_0 + iW_0)$ At high energy $W_0 \ll E + V_0$ $\kappa = \left(\frac{2\mu}{\hbar^2}(E + V_0)\right)^2 \left(1 + \frac{1}{2}\frac{iW_0}{E + V_0}\right)$

$$\Psi(\vec{r}) = e^{i\boldsymbol{k}\cdot\boldsymbol{r}}e^{-\frac{r}{\lambda}}$$

With

$$\frac{\hbar^2 k^2}{2\mu} = E + V_0, \qquad \lambda = \frac{\sqrt{\frac{2}{\mu}}\sqrt{E + V_0}}{|W_0|}$$

At very low energy, essentially the average mean-field is felt by the incident nucleon

Laboratoire de Physique des 2 Infinis

WHY THE INDEPENDENT PARTICLE WORKS?

Gomes, Walecka and Weisskopf, Ann. Phys. (1958)

ILLUSTRATION OF OPTICAL POTENTIAL IN NUCLEON-NUCLEUS CASE

Example of Phenomenological optical potential (From E. Bauge, EJC 2007)

$$V(r, E) = V(E)f(r, R_{v}, a_{v}) + 4V_{D}(E)f'(r, R_{v_{D}}, a_{v_{D}})$$

$$W(r, E) = W(E)f(r, R_{w}, a_{w}) + 4W_{D}(E)f'(r, R_{w_{D}}, a_{w_{D}})$$

$$f(r, R, a) = \frac{1}{1 + e^{\frac{r-R}{a}}}$$
$$f'(r, R_{w_D}, a_{w_D}) = \frac{d}{dr}f(r, R, a)$$

The parameters are varied until agreement with experiments for total, elastic and absorption cross-section is reached

ILLUSTRATION OF OPTICAL POTENTIAL IN NUCLEON-NUCLEUS CASE

Example of Phenomenological optical potential (From E. Bauge, EJC 2007)

EXAMPLE OF DIFFERENTIAL CROSS-SECTION SOME REMARKS

Differential neutron cross-sections on ${}^{90}Zr$ for a beam between 1.5 MeV to 24 MeV

- The optical potential is a powerful model to reproduce data
- However, it remains a global fit of the experimental data
- It does in general not tell much about the underlying physical process
- The actual tendency is to provide as much as possible microscopic information on the physical processes leading to non-elastic channels (excitation of target and projectile, direct reactions,)
- One standard systematic theory is the Feshbach theory of nuclear reactions + Brückner Hartree-Fock approach (G-matrix)

BACK TO THE SCATTERING PROBLEM WITH NON-ELASTIC CHANNELS

Laboratoire de Physique des 2 Infinis

In some cases, it is possible to mimic inelastic channels by an optical potential

$$1 - \left|\tilde{S}_{\alpha,l}\right|^2 = -\frac{8}{\hbar v} \int |u_l(r)|^2 W(r) dr$$

In many situation the scattering problem should be directly solved approximately

$$\psi_{k}^{+}(\vec{r}) \rightarrow \left(e^{i\vec{k}.\vec{r}}\Psi_{a}\Psi_{A} + \sum_{\beta}\tilde{f}_{\beta}(\Theta,\varphi)\frac{e^{ik_{\beta}r}}{r}\Psi_{i_{\beta}}\Psi_{I_{\beta}}\right)$$
$$\frac{d\sigma_{\beta}}{d\Omega} = \frac{v_{\beta}}{v}\left|f_{\beta}(\Theta,\varphi)\right|^{2} = \left|\tilde{f}_{\beta}(\Theta,\varphi)\right|^{2}$$

Laboratoire de Physique des 2 Infinis

 \vec{k}

 $|a + A\rangle$

COUPLED CHANNEL METHOD

For $E \sim MeV$, first inelastic channel is

 $a + A \longrightarrow a^* + A^*$

In that case both entrance and exit channels are a solution of the same scattering equation that is:

> Technically, should derive from the same NN+3N+... microscopic interaction

Internal state of $|a\rangle$

 $H = H_a + H_A - \frac{\hbar^2}{2\mu} \Delta_{\vec{r}}^2 -$

 k_{β}

 $|a^* + A^*\rangle$

Relative motion of $|a + A\rangle$

 $H_a \Psi_a^i = E_i^a \Psi_a^i \qquad H_A \Psi_A^j = E_j^A \Psi_A^j$

Reaction observables

Laboratoire de Physique des 2 Infinis

No mass partition No nucleon transfer

Inelastic

SIMPLIFIED SITUATION

 $H = H_a + H_A - \frac{\hbar^2}{2\mu_{\alpha}}\Delta_{\vec{r}_{\alpha}}^2 + V(r_{\alpha})$ The scattering problem can be solved by writing the eigenstates as

 $H\Psi = E \Psi$ with $\Psi = \sum_{x=\{i,j\}} \chi_x(\mathbf{r}_\alpha) \Psi_a^i \Psi_A^j$

 $\sum_{x} \left[\left(E_a^i + E_A^j - E \right) - \frac{\hbar^2}{2\mu_\alpha} \Delta_{\vec{r}_\alpha}^2 + V(r_\alpha) \right] \chi_x(\boldsymbol{r}_\alpha) \Psi_a^i \Psi_A^j = 0$

 $\left[\nabla_{\alpha}^{2} - U_{x,x}(\mathbf{r}_{\alpha}) + k_{x}^{2}\right]\chi_{x}(\mathbf{r}_{\alpha}) = \sum U_{x,x'}(\mathbf{r}_{\alpha})\chi_{x'}(\mathbf{r}_{\beta})$

 $|A^*\rangle$

 $|A\rangle$

Set of coupled-channel Equation \rightarrow solve system of linear equation

$$k_x^2 = \frac{-\mu_a}{\hbar^2} \left(E - E_a^i - E_A^j \right)$$
$$U_{x,x'}(\mathbf{r}_a) = \frac{2\mu_a}{\hbar^2} \left\langle \Psi_a^i \Psi_A^j \middle| V_a \middle| \Psi_a^i \Psi_A^j \right\rangle = \frac{2\mu_a}{\hbar^2} \iint \left(\Psi_a^i \right)^* (\mathbf{\tau}_a) \left(\Psi_A^j \right)^* (\mathbf{\tau}_A) V_a \Psi_a^i (\mathbf{\tau}_a) \Psi_A^j (\mathbf{\tau}_a)$$

211.7

COUPLED-CHANNEL METHOD : SOME REMARKS

 $\left[\nabla_{\alpha}^{2} - U_{x,x}(r_{\alpha}) + k_{x}^{2}\right]\chi_{x}(r_{\alpha}) = \sum_{x' \neq x} \chi_{x'}(r_{\alpha})U_{x,x'}(r_{\alpha})$

Diagonal: elastic channels

Off-diagonal: coupling to other channels

- The number of channels is a priori infinite then the method can be combined with optical potential
- Different mass partitions can be included (nucleons transfer) at the price of increasing the number of channel and of computing more terms related to overlaps between mass partitions
- Computation of potential acting on the relative motion is tedious

Continuum discretization

Treated by optical potential

Treated explicitly

Laboratoire de Physique des 2 Infinis

 $|\varphi_i\rangle$

 $|\varphi_f|$

A SCHEMATIC VIEW OF THE SCATTERING PROCESS

We search for a specific solution of the scattering problem

 $(H-E)|\Psi\rangle = 0$

Compatible with the known incoming wave function $|\varphi_i\rangle$ (a plane wave). This w.f. $(|\psi_k^+\rangle)$ writes

 $|\psi_{k}^{+}\rangle = |i_{\vec{k}}\rangle\langle i_{\vec{k}}|\psi_{k}^{+}\rangle + \sum |f_{\vec{k}'}\rangle\langle f_{\vec{k}'}|\psi_{k}^{+}\rangle$ $\frac{d\sigma_{i\to f}}{d\Omega} \propto \left| \left\langle f_{\vec{k}'} \middle| \psi_k^+ \right\rangle \right|^2$ Inelastic Elastic $e^{i\vec{k}\cdot\vec{r}}\Psi^0_a\Psi^0_A$ $\Psi_a^i \Psi_{\scriptscriptstyle A}^j \chi_{\scriptscriptstyle k}^\beta(\vec{r})$ $\Psi_{h}^{i}\Psi_{B}^{j}\chi_{\nu}^{\beta}(\vec{r})$ $\Psi_a \Psi_A \chi_{\nu}^{\beta}(\vec{r})$ $H_b \Psi_b^i = E_i^b \Psi_b^i$ $H_a \Psi_a^0 = E_{g.s.}^a \Psi_a^0$ $H_a \Psi_a^i = E_i^a \Psi_a^i$ $H_C \Psi_C^j = E_i^C \Psi_C^j$ $H_A \Psi_A^j = E_i^A \Psi_A^j$ $H_A \Psi_A^0 = E_{g.s.}^A \Psi_A^0$ $\mu_{\alpha} = \mu_{\beta}$ $\mu_{\alpha} \neq \mu_{\beta}$ $\mu_{\alpha} = \mu_{\beta}$ $k = k_{\beta}$ $k \neq k_{\beta}$ $k \neq k_{\beta}$

SCATTERING PROCESS

 α : entrance, elastic

 β : exit channels with change of the chemical potential composition

$$H = H_a + H_A - \frac{\hbar^2}{2\mu_{\alpha}} \Delta_{\vec{r}_{\alpha}}^2 + V(r_{\alpha})$$
$$|\alpha\rangle = |a + B\rangle$$

 $H = H_b + H_c - \frac{\hbar^2}{2\mu_\beta} \Delta_{\vec{r}_\beta}^2 + V(r_\beta) \qquad \text{overcomplete basis} \\ |\beta\rangle = |b + C\rangle$

We have to deal with non orthonormal and overcomplete basis $\{|\alpha\rangle, |\beta\rangle\}: \langle \alpha |\beta \rangle = \delta_{\alpha\beta}$

The strategy is just the same taking care of the non-orthogonality

$$\vec{k}_{\alpha} \qquad |\psi_{k,\alpha}^{+}\rangle = \sum |\varphi_{k,\beta}\rangle\langle\varphi_{k,\beta}|\psi_{k,\alpha}^{+}\rangle \\ |\beta_{\alpha}|^{2} = |f_{\alpha \to \beta}|^{2} = |\langle\varphi_{k,\beta}|V|\psi_{k,\alpha}^{+}\rangle|^{2} \qquad \text{Probability to} \\ |f_{\beta\alpha}|^{2} = |f_{\alpha \to \beta}|^{2} = |\langle\varphi_{k,\beta}|V|\psi_{k,\alpha}^{+}\rangle|^{2} \qquad \text{Probability to} \\ |f_{\beta\alpha}|^{2} = |f_{\alpha \to \beta}|^{2} = |\langle\varphi_{k,\beta}|V|\psi_{k,\alpha}^{+}\rangle|^{2} \qquad \text{Probability to} \\ |f_{\beta\alpha}|^{2} = |f_{\alpha \to \beta}|^{2} = |\langle\varphi_{k,\beta}|V|\psi_{k,\alpha}^{+}\rangle|^{2} \qquad \text{Probability to} \\ |f_{\beta\alpha}|^{2} = |f_{\alpha \to \beta}|^{2} = |\langle\varphi_{k,\beta}|V|\psi_{k,\alpha}^{+}\rangle|^{2} \qquad \text{Probability to} \\ |f_{\beta\alpha}|^{2} = |f_{\alpha \to \beta}|^{2} = |\langle\varphi_{k,\beta}|V|\psi_{k,\alpha}^{+}\rangle|^{2} \qquad \text{Probability to} \\ |f_{\beta\alpha}|^{2} = |f_{\alpha \to \beta}|^{2} = |\langle\varphi_{k,\beta}|V|\psi_{k,\alpha}^{+}\rangle|^{2} \qquad \text{Probability to} \\ |f_{\beta\alpha}|^{2} = |f_{\alpha \to \beta}|^{2} = |\langle\varphi_{k,\beta}|V|\psi_{k,\alpha}^{+}\rangle|^{2} \qquad \text{Probability to} \\ |f_{\beta\alpha}|^{2} = |f_{\alpha \to \beta}|^{2} = |f_{\alpha \to \beta}$$

The scattering states are the solution of [prior form]

$$\nabla_{\beta}^{2} + k_{\beta}^{2} \big] \chi_{\alpha}(\boldsymbol{r}_{\alpha}) = \Omega_{\alpha}(\boldsymbol{r}_{\alpha})$$

As before the solution is formally

$$\langle \varphi_{\boldsymbol{k},\beta} | \chi_{\boldsymbol{k},\alpha}^{\dagger} \rangle = \frac{e^{i\vec{k}_{\alpha}\cdot\vec{r}}}{(2\pi)^{3/2}} \delta_{\alpha,\beta} - \frac{2\mu_{\alpha}}{\hbar^2} \int d^3r_{\beta'} \frac{e^{ik_{\beta}|r_{\beta}-r_{\beta}'|}}{4\pi|r_{\beta}-r_{\beta}'|} \langle \varphi_{\boldsymbol{k},\beta} | \Omega_{\alpha}(\vec{r}_{\beta}') | \chi_{\boldsymbol{k},\alpha}^{\dagger} \rangle$$
$$= T_{\beta\alpha}$$

This is the Lippmann-Schwinger equation

Born approximation

$$\chi_{\boldsymbol{k},\alpha}^{+}(\boldsymbol{r}_{\alpha}) = \varphi_{\boldsymbol{k},\alpha}(\boldsymbol{r}_{\alpha}) = \frac{e^{i\boldsymbol{k}_{\alpha}\cdot\boldsymbol{\vec{r}}_{\alpha}}}{(2\pi)^{3/2}}$$

Distorted Wave approximation

$$\begin{split} & \left[\nabla_{\beta}^{2} - U_{\alpha,\alpha}(\mathbf{r}_{\alpha}) + k_{\beta}^{2} \right] \chi_{\alpha}(\mathbf{r}_{\alpha}) = \Omega_{\alpha}(\mathbf{r}_{\alpha}) \\ & \left[\nabla_{\beta}^{2} - U_{\alpha,\alpha}(\mathbf{r}_{\alpha}) + k_{\beta}^{2} \right] \chi_{\beta}^{-}(\mathbf{r}_{\alpha}) = 0 \\ & T_{\beta\alpha} = \left\langle \chi_{\mathbf{k},\beta}^{-} \right| \Omega_{\alpha}(\vec{r}_{\beta}') \left| \chi_{\mathbf{k},\alpha}^{+} \right\rangle \end{split}$$

- The theory of scattering by a general potential is rather cumbersome with many degrees of sophistication
- But it is used in many area of physics
- Normally particles have internal DoF, are often fermions and have spin/isospin that recouple with angular momentum/total isospin.
- This makes the theory of scattering even more technical
- Without using it we forget almost as fast as we learn this theory
- Please remember more the general strategy/physical meaning than the technical details

 $|\Psi^+_{
m in}
angle = |{
m in}
angle \langle {
m in}|\Psi^+_{
m in}
angle + \sum |{
m out}
angle \langle {
m out}|\Psi^+_{
m in}
angle$