Computer projects @IJCLab

Florent Robinet NPAC - 2023

Computer projects @IJCLab

2 projects:

- $\rightarrow\,$ Calorimeter simulation and reconstruction
- \rightarrow Search for gravitational waves

Practical information:

- \rightarrow Location: building 203
- → Dates: Mar. 15-21
- \rightarrow Schedule: 9h \rightarrow 12h and 13h \rightarrow 17h
- \rightarrow Up to 6 pairs of students
- \rightarrow Evaluation:
 - 2/3 of the grade: methodology, algorithm development, algorithm validation, code quality, code documentation
 - 1/3 of the grade: 20' presentation at the end (Tuesday afternoon)

Search for gravitational waves

 \rightarrow Use of real LIGO data around the GW150914 signal

→ Introduction to signal analysis methods Fourier transform, filtering, whitening, noise characterization

- → Stationary noise estimate (power spectral density)
- → Spectrogram of GW150914
- \rightarrow Language: C++ or python
- → External libraries:
 - C++: root (toolbox, visualization), FFTW (Fourier transforms)
 - python: numpy, scipy, matplotlib

Calorimeter simulation & reconstruction

Introduction

- \rightarrow Introduction to ROOT
- $\rightarrow\,$ Introduction to histograms and fitting methods

Monte-Carlo simulation

- \rightarrow Simplified calorimeter description
- $\rightarrow\,$ Electron and hadron showers

Reconstruction

- → Particle reconstruction
- → Detector characterization

Data analysis

→ Electron/hadron discrimination

Language: C++ Use of ROOT libraries (plots/fits) Work with C++ classes

