Stage Informatique NPAC 2018

Silvio Franz

Laboratoire de Physique Théorique et Modèles Statistiques (LPTMS)

Modeling and Simulations : Statistical Physics and Interdisciplinary applications

Collective Phenomena in Systems Composed of Many Simple Interacting Un

Possible Subjects

- Neural Networks (Machine Learning & Computational Neuroscience)
- Inference in Inverse Ising Models and Boltzmann Machine (Statistical Inference)
- Error Correcting Codes (Information Theory)
- Simulations of Aging in Spin Glasses (cond-mat Physics)
- Random Field Ising Model and Glasses (cond-mat Physics)

Neural Networks

Modeling Brain Functions

Collective Poperties of Neural Assemblies

- Memory / Learning
- Decision Making

Neurons : 2 states Firing - Quiescent $S_i=\pm 1$

Exchange Information through Synaps $i_{ij} > 0$ Excitatory

$$J_{ij} < 0$$
 Inhibitory

Spin Glasses

Reasoning / Retrieval from Memory / Decision Making, Dynamics Learning : J_{ij} Dynamic s

Ref. J.Hopfield PNAS 79 (1982) 2554 D. Marti et al. Plos One 3 (7) e2534

Machine Learning and Big Data

- Learning from data and Inference
- Possible problems
- 1. The Netflix Matrix completion and Matrix factorization problem.
- 2. Supervised Learnign from Examples. Deep Learning and Convolutional networks
- 3. Inverse Ising model
- 4. Error Correcting codes

Netflix Matrix Completion

 Recommendation System, Comp. Vision, Bioinfo, clustering..

 Find the lowest rank matrix that coincide with the known entries

Supervised Learning

Multilayer Neural Networks

Inverse Ising Models Boltzmann Machine

 $H = -\sum J_{ij}S_iS_j$ i,j

Ref. T. Mora and M. MézardarXiv:0803.3061

Error Correcting Codes

Transmission of a Signal through a Noisy Channel

Reduntant signal

What is the maximal rate allowed by a Channel How to decode a noisy signal ?

Ref. S.Franz et al. Phys. Rev. E 66 (2002) 046120

Statistical Physics

- Aging Phenomena in Spin Glasses
- Growth of correlations in Glasses
- Jamming and Avalanches in Spheres

Aging in Spin Glasses

Glassy systems fail to equilibrate on Lab time scales

No Boltzmann Distribution / History dependence

Ref: G. Biroli JSTAT (2005) P05014

How glassy systems explore configuration space ?

Random Field Ising Model and Glasses

Growing Correlations in Glassy Dynamics

Growing correlations described by power laws

Conjecture : Same Universality class as RFIM

Simulations in a Simple Model Gla

Ref. C. Donati et al. J. Non-Crystal. Solids 307-310 (2002) 215 S. Franz et al. arXiv:1008.0996

Jamming and Avalanches in Spheres

Simulations of Classical Particle Systems Srudy of glassy response Jamming critical exponents