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1 Introduction
The dynamics of a rigid particle with respect to an independent variable (usually time)
can be described, in our 3D space, with only 2 × 3 = 6 coordinates, 3 representing the
particle position, 3 representing the particle motion (function of the position evolution).

A particle accelerator is made of elements generating electromagnetic fields acting (i.e.
accelerating, deviating) on charged particles. These elements define a reference trajec-
tory associated to a reference momentum , around which the particles propagate.
Their position in the accelerator is given by a curved abscissa s [m] with generally s = 0
at the beginning of the accelerator.

The lectures on beam dynamics in particle accelerator are generally separated in two
main parts: the transverse and the longitudinal dynamics.

In the transverse dynamics, one describes the beam dynamics in the transverse plane,
orthogonal to the reference trajectory, without considering the acceleration processes (no
momentum variation). In the transverse plane , a particle is then described by its
5 coordinates with respect to the reference trajectory and the reference momentum: 2
positions (x and y), 2 slopes (x′ = dx

ds
and y′ = dy

ds
) and its momentum. To simplify

the understanding and treatment, one often considers linear forces , meaning that the
force components in the transverse plan vary linearly with respect to the distance to the
reference trajectory. The transverse dynamics can then be described using simple matrix
formalism . When the focusing system is periodic, specific tools can be used.

This lecture is about longitudinal dynamics, taking into account acceleration processes
in RF oscillating electromagnetic fields. After presentation of existing techniques to give
energy to particles, we will insist on the most used element, the RF cavity. We will see how
the time dependence of the accelerating fields lead to extend the reference trajectory and
momentum to a reference particle around which the particle dynamics can be described.
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2 Accelerating charged particles
In this lecture, a charged particle is considered rigid (with no intern property variation)
and its dynamics (evolution with respect to an independent variable) can be completely
described (in 3D space) by the evolution of 6 coordinates, 3 giving its position and 3 giving
its motion (function of the position evolution).

2.1 Energy modification
The variation with time t of a particle momentum p [kg m s−1] is given by Newton
equation :

dp
dt

= F (2.1)

Where F is by definition the force [N] acting on the particle.
The relativistic relation (see Table 2.1) between the total energy W [J] and the

momentum modulus p of a particle with rest mass m [kg] is:

W 2 =
(
mc2

)2
+ p2c2 (2.2)

c = 299 792 458 m s−1 is the physics constant corresponding to the velocity of particle with
no mass (light) in vacuum.

One defines:

W = γ ·mc2 (2.3)

and:

p = γ ·mv = γβ ·mc (2.4)

Where:

• v = dr
dt

= βc [m s−1] is the particle velocity , the time derivative of its position;

• γ is the particle reduced energy , also known as the Lorentz factor in frame change;

• β is the particle reduced velocity ;

• βγ is the particle reduced momentum .
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Table 2.1: Relations between the reduced velocity, reduced energy, kinetic energy, and
momentum
β pc T W γ

β β pc/W√
(W0/pc)2+1

√
1 −

(
1 + T

W0

)−2
√

1 −
(

W
W0

)2
= pc

W

√
1 − γ−2

pc Wβ pc
√

T (2W0 + T )
√

W 2 − W 2
0 = Wβ W0

√
γ2 − 1

T
1−

√
1−β2√

1−β2
W0

√
W 2

0 + p2c2 − W0 T W − W0 (γ − 1)W0

W pc
β

√
W 2

0 + (pc)2 T γ
γ−1 = W0 + T W γW0

γ 1√
1−β2

pc
βW0

1 + T
W0

W
W0

γ

Dividing Eq. (2.3) by (mc2)2 gives:

γ2 = 1 + (βγ)2 (2.5)

Deriving Eq. (2.3) with time gives:

W · dW
dt

= c2 · p · dp
dt

= c2
(
px
dpx

dt
+ py

dpy

dt
+ pz

dpz

dt

)
= c2 (px · Fx + py · Fy + pz · Fz) (2.6)

Then:

dW

dt
= v · F (2.7)

The Lorentz force F [N] applied by an electromagnetic field (E,B) ([V m−1],[T])
on a particle with charge q [C] and velocity v [m s−1]:

F = q · (E + v × B) (2.8)

• E [V m−1] is the electric component of the electromagnetic field,

• B [T] is the magnetic component of the electromagnetic field.

The energy time derivative is then:

dW

dt
= v · F

= q · v · (E + v × B)
= q · v · E (2.9)
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Figure 2.1: Reference trajectory (red) and associated curved abscissa .

The transverse plan associated to a particle is the plan orthogonal to the reference
trajectory containing the particle. Its position on the reference trajectory is given by the
curved abscissa s (see Figure 2.1). Its velocity is:

vs = ds
dt

(2.10)

The variation of the particle energy along the reference trajectory is given by:

dW

ds
= 1
vs

· dW
dt

= q · v
vs

· E = q ·
(
Es + vx

vs

· Ex + vy

vs

· Ey

)
= q · (Es + x′ · Ex + y′ · Ey) (2.11)

• x and y are the particle coordinates in the transverse plan,

• x′ = dx

ds
= vx

vs

and y′ = dy

ds
= vy

vs

are the particle slopes.

One has:

• A force orthogonal to the particle motion (velocity, momentum. . .) does not change
its energy. It is the case of the force associated to magnetic field. Only the electric
field can change the particle energy.

• To be the most efficient, the electric field should be along the particle motion (or the
reference trajectory). In this case, one simply has:

dW

ds
= q · Es (2.12)

To accelerate the beam, one has to imagine and construct components capable to housing
electric field, with at least one hole (usually 2) for beam input and output.
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The electromagnetic field evolution is given by Maxwell equations :

∇ · E = ρ

ϵ0

∇ × E = −∂B
∂t

∇ · B = 0

c2∇ × B = j
ϵ0

+ ∂E
∂t

(2.13)

• ρ [C m−3]is the charge volume density ,

• j [A m−2] is the current surface density ,

• ϵ0 = 8.854 188 × 10−12 C2 N−1 m−2 is the vacuum electric permittivity . It is
defined from the vacuum magnetic permeability , µ0 = 4π× 10−7 N A−2 and c by:
µ0ϵ0c

2 = 1.

One uses also:

• The magnetic vector potential A [T m]:

B = ∇ · A (2.14)

• The electrostatic potential V [V]:

E = −∇ · V − ∂A
∂t

(2.15)

2.2 Potential difference - electrostatic accelerators
The easiest way to generate an electric field is to apply potential difference ∆V between two
conductors. This static electric field does not depend on time and is then not associated to
a magnetic field. The potential value V everywhere in space depends only on the conductor
and dielectric configuration. The electric field is given by:

E = −∇ · V (2.16)

The beam is injected close to one conductor (at abscissa s1) and propagates to the second
one (at abscissa s2), gaining energy ∆W [J] given by Eq. (2.8):

∆W =
s2∫

s1

dW

ds
· ds = q ·

s2∫
s1

v
vs

· E · ds = q ·
s2∫

s1

E · ds = −q ·
s2∫

s1

∂V

∂s
· ds

∆W = −q (V (s2) − V (s1)) = −q∆V (2.17)
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Remark: The energy international unit is the Joule [J]. However, this unit is not very
convenient as the particle individual energy is usually much lower than 1 J. For example,
the energy gained by a proton (q = 1.602×10−19 C) under a potential difference of 1 million
of volts is 1.602 × 10−13 J. We prefer to use the electron-Volt [eV] which is the energy
gained by a proton under a potential of 1 V:

1 eV = 1.602 × 10−19 J (2.18)

In Eq. (2.17), the particle charge q can be considered as the simple multiple of elementary
charge |e| = 1.602 × 10−19 C, q = Q× |e|, Q ∈ Z.

A potential difference is obtained by displacing charges from one conductor to another.
This is done in electrostatic Van De Graaf -type accelerators (Figure 2.2) where charges
are deposited on an isolating belt at one end of the accelerator and transported (with an
engine, where the energy comes from !) to the other end where they are taken. The charges
come back to their original position through a mutli-stage resistor. This return current
produces the potential difference between the stages, seen by the beam.

Figure 2.2: Principle of a Van de Graaf accelerator

Unfortunately, the voltage of this type of machine is limited to a few MV. The limit is
due to the voltage difference at the high potential end (where a positive beam is produced)
because this high voltage has to be supported also with the external accelerator shell (or
tank) placed at earth potential (for safety reasons). When static electric field is higher than
a few MV/m, breakdowns (electron avalanche) become highly probable, which lead, in
the best case, to energy lost and voltage decrease, or, in the worst case, to structure
destruction.

2.3 Induction cell - Induction accelerator
The induction cell can be seen as the extremity of a coaxial line in which an electromagnetic
wave propagates. This wave is slowed down with a ferromagnetic element.

At t = 0 (Figure 2.3), one applies a voltage V between internal and external conductors
at the extremity of a coaxial line with length L. This voltage the integration of electric
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field between conductors. This electric field is accompanied by a magnetic field turning
around the central conductor. This electromagnetic field propagates in the line.

The energy volume density w [J m−3], is given by:

w = ϵE2

2 + ϵB2

2µ (2.19)

• ϵ [C2 N−1 m−2] is the average electric permittivity,

• µ [N A−2] is the average magnetic permeability between conductors.

The Poynting vector Π is the electromagnetic power flow [W m−2] or [J m−3m s−1]
through the line. It is proportional to the vectorial product between electric and magnetic
fields:

Π = E × B
µ

(2.20)

The propagation velocity v depends on ϵ and µ of the inter-conductor matter:

v = 1
√
ϵµ

(2.21)

In vacuum, v = c. In another material, v < c.
Assuming that the coaxial ends with a short-circuit. When the propagating electro-

magnetic field reaches the short-circuit, an electromagnetic wave, whose electric field is
opposite to the incident wave to satisfy to the limit conditions (no electric field transverse
component in the short circuit conductor) is reflected (Figure 2.3). On the short-circuit
end, the electric field is completely cancelled. The electromagnetic energy is then carried
by its magnetic component whose amplitude is doubled by the short-circuit.

Figure 2.3: Wave propagation in a coaxial guide ending by a short-circuit.

Let’s imagine geometry where the beam could go from inner to outer conductor at its
middle point (L/2). It could gain energy when the electric field is not null between t = L

2·v
and 3L

2·v , during ∆t = L
v
. Suppose now that one wants to accelerate the beam during about

∆t = 100 ns, the line length should be:

L = v · ∆t (2.22)

in vacuum, this gives L = 30 m !
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Figure 2.4: Induction cell geometry (AIRIX).

In order to reduce the wave velocity between the beam injection position and the short-
circuit to obtain a reasonable length, one fills it with a ferromagnetic material with very
high µ.

This is induction cell principle whose example of geometry is shown in Figure 2.4.
The inner conductor (dotted blue line) is connected to point A, the outer conductor

(dashed green line) to points B and C. The accelerating electric field is applied between
point A′ (connected to inner) and point C. The ferromagnetic material (ferrite with µ ≫ 1)
slows down the wave to the short-circuit (dotted-dashed orange line) where it is reflected.
The cell geometry should be matched (impedance) to the upstream coaxial line in order to
avoid wave partial reflection upstream the short-circuit (in the cell). The electromagnetic
pulse is generated by devices out of the scope of this lecture. One can just understand
that their principle consists in "slowly" storing large amount of energy (in capacitors,
inductances or lines) and quickly discharging it in the coaxial line with fast switches.

2.4 Plasma acceleration
2.4.1 Motivations
A plasma is an environment containing free positive (sometimes negative) ions, electrons
and even neutral atoms or molecules. Only the charges play a role in electromagnetic field
generation. If no external field is applied, the free charges organize themselves in order to
compensate the field from the other charges. Average negative and positive charge densities
are the same. The average field which would be felt by a fast particle crossing this plasma
would be null.

11



A laser is an intense beam of coherent photons equivalent to a very high and very
short electromagnetic field. This field, when penetrating the plasma, makes (mainly) the
electrons moving as they are lighter (less inertia) than the ions. These electrons, initially
moved from their equilibrium position, oscillate (or surf) around ions contributing to very
intense oscillating electromagnetic field (more than 100 GV m−1). Very intense wave are
initiated by laser propagation in the plasma. Very strong acceleration of charged particles
"in phase" is then possible. The laser can also be used to generate the plasma.

The big advantage of plasma acceleration is that a plasma can manage large acceleration
gradient ( up to 100 GV/m!), paving the path to compact acceleration (if we consider only
the acceleration medium without the laser ;-)). In this lecture, we will give only a very
short introduction to plasma acceleration of electrons with a laser as a driver (the so-called
LWFA for laser-wakefield acceleration). That is also possible to use an intense beam as a
driver; in this case we call them PWFA for Plasma Wakefield Acceleration. Other acceler-
ation medium are also considered as dielectric structures. Finally, other mechanisms exist
to accelerate ions with very intense lasers (more than 2 orders of magnitude more than the
ones used for electron acceleration) with the TNSA (Target Normal Sheath Acceleration)
mechanism but that is out of the scope of this lecture.

The motivation of this part is to introduce the ponderomotive strength to explain how
electrons can be accelerated with a laser although the laser electric field is transverse to the
propagation direction. That will introduce also the wavebreaking and give some limitations
to this acceleration device. The aim is not to give an exhaustive review of this acceleration
mechanism.

In all this section, we will do the following assumptions:
• The plasma is cold (meaning kbTe ≈ 0 eV and non-magnetised.

• The plasma ions are initially singly charged (Z = 1) with a homogeneous background
of ion density n0 and are motionless (vi = 0).

• The thermal motion of the electrons is negligible compared to the induced motion
by laser field (vosc ≫ vth,e).

Even if very promising, this technology is not yet operational to accelerate intense beam
with low energy dispersion and reasonable energy consumption. To be followed. . .

2.4.2 The 1D plasma acceleration
We will a assume that the laser is linearly polarized in the transverse direction y and
with plane-wave geometry (which is a strong assumption but enables to make some useful
simplifications). The propagation direction is x. For this reason, we assume that the
electromagnetic field, plasma properties, and beam properties do not depend on the spatial
coordinates y and z. Since the laser is linearly polarized with plane-wave geometry, it brings
the following electromagnetic field (EL,BL):

EL = Eyey = −∂Ay

∂t
ey BL = Bzez = ∂Ay

∂x
ez (2.23)
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The Maxwell equations in the plasma become:

∇ · E = e

ϵ0
(n0 − ne) ∇ × E = −∂B

∂t

∇ · B = 0 c2∇ × B = − e

ϵ0
nev + ∂E

∂t

B = ∇ × A E = −∇ · ϕ− ∂A
∂t

(2.24)

Let us consider the motion equation:

dp
dt

= ∂p
∂t

+ (v · ∇) p = −e (E + v × B) p = γmev (2.25)

= −e
(

−∇ϕ− ∂A
∂t

+ v × ∇ × A
)

(2.26)

= −e


−∂ϕ

∂x
+ vy

∂Ay

∂x

−∂Ay

∂t
− vx

∂Ay

∂x
0

= e



∂ϕ

∂x
− vy

∂Ay

∂x
dAy

dt
0

(2.27)

We have then d
dt

(py − eAy) = 0 and thus by assuming that the plasma is cold with no
initial transverse momentum.

∀t, py = eAy (2.28)

The Mawxell equations Eq. (2.24) give:

c2∇ × (∇ × A) + ∂2A
∂t2

= J
ϵ0

− ∇∂ϕ

∂t
(2.29)

Let us split J with a rotational (solenoidal) part and irrotational (longitudinal) part:

J = J⊥ + J∥ = ∇ × Π + ∇ψ

Coulomb’s gauge ∇ · A = 0 gives A = ∇ × K. The Equation (2.29) becomes:

∇ ×
(
c2∇ × A + ∂2K

∂t2
− Π
ϵ0

)
= ∇

(
ψ

ϵ0
− ∂ϕ

∂t

)
(2.30)

Since the equality ∇ × A = ∇ϕ implies that ∇ × A = ∇ϕ = 0, we get:

J∥

ϵ0
− ∇∂ϕ

∂t
= 0 vx = ϵ0

ene

∂Ex

∂t
(2.31)

c2∇ × (∇ × A) + ∂2A
∂t2

= J⊥

ϵ0
(2.32)
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By using Coulomb’s gauge, ∇ × ∇A = ∇(∇ · A) − ∆A, and py = eAy, we get:

∂2Ay

∂t2
− c2∆Ay = Jy

ϵ0
= − e2ne

ϵ0meγ
Ay (2.33)

The right-hand nonlinear source term on the right-hand contains two important bits of
physics:

• ne = n0 + δn, coupling the EM wave to plasma waves,

• γ =
√

1 + p2/m2
ec

2, introducing relativistic effects.

Motion equation Eq. (2.27) and Poisson’s law give:

d

dt
(γmevx) = −eEx − e2

2meγ

∂

∂x
A2

y vx = ϵ0

ene

∂Ex

∂t
ne = n0 − ϵ0

e

∂Ex

∂x
(2.34)

We make the average on a laser period. Perturbative approach by linearising the plasma
fluid quantities:

ne ≈ n0 + n1 . . . vx ≈ v1 + . . . γ ≈ γ0 + γ1 . . . (2.35)

ωp =
√
e2n0

ϵ0me

e
〈
A2

y

〉
mec

= a2
0

2 γ0 =
√

1 + a2
0

2 (2.36)

(
γ0

ω2
p

∂2

∂t2
+ 1

)
eEx = − e2

2meγ0

∂A2
y

∂x
(2.37)

We get finally the relativistic ponderomotive force:

⟨Fx⟩ = − e2

2meγ0

∂A2
y

∂x
(2.38)

The normalized potential vector a0 is linked to the laser intensity and laser electric field
E0 by:

a0 ≡ eE0

meωc
≈
√

0.73 · λ2 [µm] · I0 [1 × 1018 W cm−2] (2.39)

When a0 ≈ 1 (corresponding to a laser intensity I0 = 2×1018 W cm−2 with the wavelength
λ = 0.8 µm), we are in the quasi-linear regime. If external electrons are injected at the right
moment, they can be trapped in a plasma wave either in the linear or non linear regime.
An example of the plasma density variation and electric field is shown for the linear regime
with a0 = 0.15 in Figure 2.5. For this example, the beam is assumed Gaussian (and not
with a planar geometry as studied before).
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Figure 2.5: Variation of the potential ϕ, electric field Ez, and plasma density along the
plasma axis (top left). The electron density (bottom let), the longitudinal
(top right) and transverse (bottom right) electric fields are shown by assuming
that the driver is a Gaussian laser beam with a normalized potential vector
a0 = 0.15.

2.4.3 Non-linear regime
The variation of the electric field and electron density is given with a growing a0 in Fig-
ure 2.6. When a0 increases, we can see that the motion becomes very non-linear: the
density variation is non sine-like anymore. When a0 becomes very large (a0 > 2), the elec-
tron motion becomes turbulent. The electron trajectory can cross the axis and the wave
breaks. Electrons from the plasma can be trapped in the plasma wave in extreme a0: we
leave the quasi-linear regime to enter the blowout regime (see Figure 2.7).

In the blowout regime, the electrons are expelled from high laser intensity area and leave
behind a cavity (bubble filled with ions). The electrons are self-injected at the back of
the bubble and accelerated. The injected electrons modify the back of the bubble (the
so-called beam loading; see section 3.1.1). The laser pulse is compressed and self-focusing
in the the plasma chamber [1]. In this regime, as long as the witness beam wakefields are
negligible, the acceleration only depends of the the distance ξ to the centre of the bubble
which moves nearly at the laser group velocity position. The field accelerates electrons for
ξ < 0 and decelerates them for ξ > 0.

2.4.4 Limitations
Although the accelerating gradient can reach 100 GV/m, the state-of-the-art energy gain
in the plasma chamber is less than 10 GeV (see Figure 2.8). The main limitations are:

• Dephasing between the driver (laser or beam) and accelerated electrons.
– Limitations on the accelerating length.
– Requires several plasma stages to go beyond 10 GeV.
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Figure 2.6: Variation of the potential ϕ, electric field Ez, and plasma density along the
plasma axis (top left) for different values of a0
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Figure 2.7: Illustration of the blow-out regime. The black cavity is electron empty: all
plasma electrons have been repelled. In the black cavity, an electron bunch can
be captured and accelerated.

• Energy depletion of the driver.

• Focusing length of the driver.

• Other hot topics: preserving beam quality, reducing momentum spread, reproducibil-
ity, . . .

The maximum acceleration distance corresponds to the smallest distance between pump
depletion or dephasing. The pump depletion length, Lpd, is the length it takes for the
laser to exhaust its energy to the plasma through wakefield excitation. For propagation
distances larger than Lpd, the amplitudes of the plasma waves are negligible. Thus, we
can assume that the acceleration stops at Lpd. The dephasing length, Ld, is the length it
takes for a particle to outrun the accelerating phase of the wave, i.e. to go from regions
with ξ < 0, where Eaccel < 0, to regions with ξ = 0 where Eaccel = 0. Pump depletion
in the blowout regime is determined by the rate at which the laser leading edge gives its
energy to the plasma. This localized pump depletion process is also called etching. Since
the back propagates mostly in vacuum, it does not give energy to the plasma. As the
laser propagates, the front of the laser is then locally pump depleted. The pump depletion
length is then given by the product between the laser duration and the velocity at which

17



Figure 2.8: Maximum reached energy gain as a function of the plasma density.

the laser leading edge etches back, given by vetch = cω2
p/ω

2
0.

Lpd = ω2
0
ω2

p

(cτL) (2.40)

The maximum dephasing length is given by the length it takes for a particle travelling
at c to outrun the accelerating phase of the wakefield traveling with a phase velocity vϕ.
For an electron initially at ξ = rb, Ld = crb/(c − vϕ). Since the wake phase velocity is
vϕ = vg − vetch, where rb is the bubble radius, vg is the laser linear group velocity given by

vg = ∂ω

∂k
= 1 − 1

2
ω2

0
ω2

p

(2.41)

the dephasing length is

c− vϕ

c
Ld = rb ⇒ Ld = 2

3
ω2

0
ω2

p

rb (2.42)

Combining Eqs. (2.40) and (2.42) yields a criteria for choosing the laser duration τL for
optimal acceleration such that no laser energy is left after the electrons outrun the wave
at Lpd = Ld:

τL = 2
3rb (2.43)

We can now estimate the maximum energy ∆E = q⟨Eaccel⟩Laccel gained by an electron in
the blowout regime. Denoting the acceleration distance by Laccel = Ld = Lpd then

∆E = 2
3mec

2ω
2
0
ω2

p

a0 (2.44)
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So far, we have neglected the influence of the transverse laser dynamics on wakefield excita-
tion and electron acceleration. This approximation is valid as long as the laser propagation
and wakefields remain stable during Laccel. In order to stabilize the transverse laser dynam-
ics, we need to explore how to prevent laser Rayleigh diffraction, one of the key processes
that can degrade wakefield excitation and electron acceleration. Theory, simulations and
experiments have shown that plasmas can act as optical fibers, guiding the propagation of
intense lasers over distances that largely exceed the Rayleigh length. In strongly non-linear
regimes, the blowout region refractive index gradients are sufficient to self-guide the body
of the driver. Through simulations, it has been found that the optimal condition for stable,
self-guided laser propagation occurs when W0 = rb = 2√

a0 as long as a0 > 2.
In addition to determining maximum accelerating gradients and final energies in the

blowout regime, the accelerating and focusing wakefields also define important beam load-
ing properties such as the maximum charge that can be accelerated. To estimate the
maximum amount of accelerated charge, we assume that a witness electron bunch absorbs
all the energy contained in the longitudinal and focusing bubble fields. The electromagnetic
energy of the wakefield in the blowout regime is

ϵ∥ ≈ ϵ⊥ ≈ 1
120 (kprb)5

(
m2

ec
5

ωpe2

)
(2.45)

and the energy absorbed by N particles, assuming an average accelerating field gradient
Eaccel ≈ rb/2, is

ϵe− ≈ mec
2N

(
kprb

2

)2

(2.46)

Matching Eq. (2.45) to Eq. (2.46) then gives

N ≈ 1
30 (kprb)3 1

kpre

(2.47)

where N is the maximum number of electrons that can be loaded into the wakefield. The
acceleration efficiency is the fraction of laser energy that goes into the accelerated electrons.
Since the laser energy scales with r3

ba
2
0 (assuming W0 ≈ cτL ≈ rb), then the efficiency goes

as

Γ ≈ 1
a0

(2.48)

These equations illustrate the trade-off between energy gain, maximum number of accel-
erated particles and efficiency. For a constant laser energy, lower laser a0 leads to higher
efficiencies at the expense of lower accelerated charge and longer accelerating distances
that result in final higher energies. Higher laser a0 lead to lower efficiencies, lower final
bunch energies, but to higher charge. In addition, the acceleration distance is also smaller
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for higher a0. The scaling laws derived above can also be rewritten in practical units as

τL[fs] = 53.22
(
λ0[µm]

0.8

)(
ϵ[J]
a2

0

)1/3

(2.49)

ω0 = 3
2cτL (2.50)

n0[cm−3] ≈ 3.71 a3
0

P [TW]

(
λ0[µm]

0.8

)−2

(2.51)

Laccel ≈ 14.09ϵ[J]
a3

0
(2.52)

∆E[GeV] ≈ 3
(
ϵ[J]
a2

0

0.8
λ0[µm]

)2/3

(2.53)

q[nC] ≈ 0.17
(
λ0[µm]

0.8

)2/3

(ϵ[J]a0)1/3 (2.54)

These scalings have been used to guide and predict the output of current laser wakefield
acceleration experiments, and to guide the design of future experiments using some of the
most powerful lasers soon to become available. They have also been confirmed through
numerous 3D simulations performed with different algorithms.

The scalings presented here are strictly valid for 2 ≾ a0 ≾ 2(ω0/ωp)1/4. However, electron
acceleration can also occur at much higher laser intensities. For instance, using a0 = 53,
3 GeV electron bunches with high charges of around 25 nC could be achieved, although at
the expense of higher energy spreads.

20



3 The RF cavity
Two families of RF cavities exist:

• the resonators or standing wave cavities ,

• the travelling wave cavities.

Principles and characteristics are detailed later on. A particular effort has been put on the
mostly used standing waves RF cavities.

3.1 The RF resonator
3.1.1 Field calculation
An RF cavity is piece of metal enclosing an empty volume (with sometimes dielectric or
magnetic material). Boundary conditions allow the possible existence of electromag-
netic "quantified" configurations, solutions of Maxwell equations: the resonating modes
.

∇ · E = ρ

ϵ0
∇ · B = 0

∇ × E = −∂B
∂t

∇ × B = µ0j + 1
c2
∂E
∂t

µ0 = 4π × 10−7 N A−2: vacuum permeability,
ϵ0 = 1

µ0c2 : vacuum permittivity,
c = 299 792 458 m s−1 : speed of light.

Maxwell equations

n × En = 0 n · B = 0

n · En = σ

ϵ0
n × Hn = K

n: normal to conductor surface,
σ [C m−2]: charge surface density,
K [A m−1]: current surface density,

Boundary conditions
Each resonating mode is identified by an index n, and characterized by electromagnetic

field amplitude map En(r)/Bn(r) oscillating at RF frequency fn [Hz]. The electric field
amplitude is a solution of:

∇2En + ω2
n

c
En = 0 (3.1)

• En satisfies to boundary conditions,

• ωn = 2πfn is the mode RF pulsation .
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At a given time, the electric field in the cavity is the weighted sum of all modes:

E (r, t) =
∑

n

en(t) · En(r) =
∑

n

an · eıωntEn(r) (3.2)

an is a complex number whose phase gives the mode phase at t = 0, and whose modulus
gives the mode amplitude. It may vary with time, but generally much slower than the RF
frequency.
en(t) represents the field time variation, solution of:

ën + ω2
nen = −1

ϵ
d
dt

v

S

(E × Hn) · n · dS

+1
ϵ

d
dt

v

S′
(H × En) · n · dS ′ − 1

ϵ
d
dt

t

V

J(r, t) · En(r) · n · dV (3.3)

A1 = − 1
ϵ

d

dt

{

S

(E × Hn) · n · dS (3.4)

A2 =1
ϵ

d

dt

{

S′

(H × En) · n · dS ′ (3.5)

A3 = − 1
ϵ

d

dt

y

V

J(r, t) · En(r) · n · dV (3.6)

• H [A m−1] is the magnetic induction defined by: B = µ · H.

• J [A m−2] is the current density in the volume, from the beam, for example.

□ The first right term of Eq. (3.3), A1 (Eq. (3.4)), is an integration on the conductor
surface S. It represents the losses by Joules effect and can be modelled by a damping
term:

A1 = − ωn

Q0,n

· ėn (3.7)

Q0,n, the unloaded quality factor of mode n, can be obtained from energetic
considerations: Let Un(0) be the stored energy in mode n at t = 0. When
t > 0, no more power is injected in the cavity. Let us define kn(t), the n-mode field
amplitude relative from the initial time:

kn(t) = |an(t)|
|an(t = 0)| (3.8)

The energy loss per unit time is the power Pn dissipated on the conductor:

dUn(t)
dt

= −Pn(t) (3.9)
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The average dissipated power on the conductor over an RF period is proportional
to the square of the current surface density (and then to the square of the surface
magnetic field):

Pn = Rs

2

{

S

Kn
2 · dS = Rs

2

{

S

Hn
2 · dS (3.10)

Rs [Ω] is the surface resistance defined as:

Rs =
√
µ0πf0

σ
for normal conductors (3.11)

– σ [S m−1] is the conductor electric conductivity ( 1
σ

= 1.7 × 10−8 Ω m for copper
at 300 K).

Rs ≈ Rres + 9 × 10−5f
2
0 (GHz)
T (K) exp

[
−1.92 T

Tc

]
for superconducting Niobium (3.12)

– Rres is the residual resistance (1 nΩ to 10 nΩ) depending on surface imperfec-
tions,

– T is the working surface temperature,
– Tc = 9.2 K is the niobium critical temperature.

From equations (3.8) and (3.10), one has:

Pn(t) = kn(t)2 · Pn(t = 0) (3.13)

The stored energy is proportional to the square of the field amplitude:

Ui = ϵ0

2

y
∥Ei∥2 d3τ = 1

2µ0

y
∥Bi∥2 d3τ (3.14)

then:

Un(t) = kn(t)2 · Un(t = 0) (3.15)

Equation (3.9) becomes:

dk2
n

dt
= −Pn

Un

· k2
n = 2k̇n · kn (3.16)

giving:
dan

dt
= − Pn

2Un

· an (3.17)

A comparison with the damping term in Eq. (3.7) leads to:

Q0,n = ωn · Un

Pn

(3.18)
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□ The second right term of Eq. (3.3), A2 (Eq. (3.5)), is an integration on the open
surfaces S ′. It represents the cavity coupling with outside, which can be divided in
2 contributors:

– the RF power injected trough the power coupler,
– a power loss by radiation through cavity apertures (including the coupler), mod-

eled by a damping term with another quality factor Qex,n known as the external
quality factor . It can be easily calculated with electromagnetic codes.

A2 can be written:

A2 = − ωn

Qex,n

· ėn + Sn exp [ı (ωRFt+ φ0)] (3.19)

Sn exp [ı (ωRFt+ φ0)] is the RF source feeding the cavity though the coupler.

□ The third right term of Eq. (3.3), A3 (Eq. (3.6)), is the contribution of the charge in
the volume, known as beam loading . It is proportional to the beam current:

A3 = kn · I(t) (3.20)

I(t) is a complex number representing the beam current (its phase is given by the
beam phase in the cavity)

□ Finally, Eq. (3.3) can be modelled by:

d2en

dt2
+ ωRF

Qn

+ ω2
n · en = Sn exp [ı (ωRFt+ φ0)] + kn · I(t) (3.21)

which is the equation of a damped driven harmonic oscillator.
– Qn is the cavity loaded quality factor , with : 1

Qn
= 1

Q0,n
+ 1

Qex,n
,

– τ = 2 · Qn

ωRF
[s] is the cavity filling time .

Both coupler and beam can excite cavity modes.
Equation (3.21) is the one of an RLC circuit often used to model a cavity.
Among all cavity modes, one is chosen which has an electric field along the cavity axis
on which the beam propagates. It is in charge to accelerate the beam. The cavity
geometry is then calculated in order to adjust this mode frequency to the chosen RF
frequency. This mode is excited by injecting RF power though the coupler whose
geometry is calculated to limit power reflection (coupler matching).
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3.1.2 Shunt impedance
One considers that only the accelerating mode is excited in the cavity. In a cavity with
cylindrical symmetry, the electric field transverse component is zero. The on-axis longitu-
dinal component is:

Ez(s, t) = Ez,0 · cos (ωRF · t+ φ) (3.22)

Ez,0(s) is the field amplitude. Let V0 [V] be the cavity voltage:

V0 =
+∞∫

−∞

|Ez,0(s)| · ds (3.23)

|q| · V0 is the maximum energy gain which a particle of charge q could gain if field was
maximum everywhere and every time.

Let us Pd [W] be the dissipated power in the cavity. It can be written:

Pd = V 2
0

2 ·R
(3.24)

R [Ω] is the cavity shunt impedance . The higher it is, the more efficient the cavity is.
Because electric field changes with time while the particle travels through it, the maxi-

mum energy |q| ·V which a particle can gain is lower than |q| ·V0. One defines the transit
time factor T as:

T ≡ V

V0
≤ 1 (3.25)

It can be seen as a correction factor on the maximum possible energy gain taking into
account the transit time of the particle through the cavity (and the associated field evo-
lution). It depends on the particle velocity. The way it is calculated is detailed later on
28.

The effective shunt impedance R · T 2 [Ω] is proportional to the square of the maxi-
mum possible energy gain ∆Umax and the lost power in the cavity:

RT 2 = ∆U2
max

2 · Pd

(3.26)

It can be seen as energy transfer efficiency and should be maximized.
The effective shunt impedance is often used to compare the efficiency of several accel-

erating structures at a given particle energy. As their geometries are often very different,
one can extend these properties per unit length in order to help to choose among them.

Let L be the cavity length 1. The maximum average electric field E0 is:

E0 ≡ V0

L
(3.27)

1Because of fringe field, L is often arbitrarily chosen as the cavity physical length.
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The power deposition per unit length P ′
d in the cavity is:

P ′
d = E2

0
2 · Z

(3.28)

Z [Ω m−1] is the cavity shunt impedance per unit length .
The effective shunt impedance per unit length ZT 2 [Ω m−1] is proportional to the

square of the maximum possible energy gain per unit length δU ′
max and the lost power per

unit length in the cavity:

ZT 2 = ∆U ′2
max

2 · P ′
d

(3.29)

Between two normal-conducting structures, one usually chooses the structure with the
highest ZT 2 at a given energy (velocity). Figure 3.1 shows the evolution of ZT 2 for
two types of structures (SDTL and CCL2) with different pipe apertures ϕ. In the same
structure, the higher the aperture is (to leave more room to the beam), the lower the
shunt impedance is. The SDTL structure is more efficient at low energy but less at high
energy than the CCL one. The optimum transition between structures is about 100 MeV
for protons.

Figure 3.1: Effective shunt impedance per unit length in two structures (SDTL and CCL).
Calculations done by C. Bourat for TRISPAL project (CEA-DAM).

2An illustration of these structures can be found in paragraph 3.4
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3.2 Energy gain in a RF cavity
L is the cavity length, s0 its input abscissa (on the reference trajectory). Ez(s) is the
amplitude of the longitudinal field on the reference trajectory. The energy gain ∆W of a
charged particle on reference trajectory is:

∆W =
s0+L∫
s0

q · Ez(s) · cosφ(s) · ds (3.30)

• q is the particle charge,

• φ(s) is the RF phase when particle is at s:

φ(s) = φ0 +
s0+s∫
s0

dt

βz(t) (3.31)

φ0 = φ(s0) is the RF phase when particle enters the cavity.

By writing φ(s) = φ(s) + (φs − φs), φs being, for the moment, an arbitrary phase and
using trigonometry, one gets:

∆W = q cosφs ·
s0+L∫
s0

Ez(s) · cos (φ(s) − φs) · ds− q sinφs ·
s0+L∫
s0

Ez(s) · sin (φ(s) − φs) · ds

(3.32)

φs can be chosen such as:

s0+L∫
s0

q · Ez(s) · sin (φ(s) − φs) · ds = 0 (3.33)

Giving the definition of the synchronous phase φs:

φs = arctan


s0+L∫
s0

Ez(s) · sinφ(s) · ds
s0+L∫
s0

Ez(s) · cosφ(s) · ds

 (3.34)

One finally simplifies the energy gain expression:

∆W =
q s0+L∫

s0

|Ez(s)| · ds

 · T · cosφs = q · V0 · T · cosφs (3.35)
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with T the particle transit-time factor in the cavity:

T ≡ 1
V0

s0+L∫
s0

q · Ez(s) · cos (φ(s) − φs) · ds (3.36)

T depends on the particle velocity and the field amplitude. One notes that these defini-
tions use no assumption concerning the field amplitude form or the particle velocity change
in the cavity.

The calculation of T from Eq. (3.36) is not direct as it needs first to calculate φs. In
fact, when velocity change is much smaller than particle velocity, T does not depend on
φs and another simpler equation can be used:

T = 1
V0

∣∣∣∣∣∣
s0+L∫
s0

Ez(s) · eıϕ(s) · ds

∣∣∣∣∣∣ (3.37)

Remark : In more complex geometries, Ez depends on the transverse position in the
cavity. This means that synchronous phase and transit time factor of each particle slightly
depends on its transverse position. This is an example of coupling between longitudinal
and transverse beam dynamics.

3.3 Transverse kick in a cylindrically symmetric RF cavity
According to Maxwell equations, an electromagnetic field whose longitudinal electric com-
ponent Ez is varying in space is accompanied by a radial electric component Er and an
azimuthal magnetic component Bθ.

These two components produce a radial force on the particle:

Fr = q (Ez − vz ·Bθ) (3.38)

The complete calculation of this force can be found in CERN course, for example.
Just keep in mind that it can be written:

Fr = −q · ωRF · V0T

q · βc · γ2 · sinφs · r + O(r3) (3.39)

The cavity induces a (de)focusing transverse force.
Remarks:

• Transverse force is linear at second order3.

• It goes down rapidly with particle energy.
3From a development in r/R, R being the cavity aperture radius!
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• The higher the frequency is, the higher the effect is.

• It is phase dependent: front and back of the bucket are not (de)focused the same
way. It is a new source of coupling between longitudinal and transverse dynamics.

• Maximum acceleration gives a transverse effect null (at second order).

3.4 Some RF cavities
The Radio-Frequency Quadrupole (RFQ) (Figure 3.2) is used to bunch continuous
beams at low velocity (β < 0.1) and to accelerate them to an energy where they can be
accelerated by less expensive structures. Transverse focusing is made by a quadrupole
electric field due to electrode quadrupole geometry. Longitudinal electric field is produced
by modulation of the electrode distance. These amplitude and period modulations are
progressively increased in order to bunch and accelerate the beam.

Figure 3.2: RFQ cavity.

The Drift-Tube Linacs (DTL) is used to accelerate beam with β from 0.05 to 0.4. At
a given time, the phase difference between two consecutive gaps is 2π (they are in phase).
When the field is decelerating, the beam is screened by a drift tube. Transverse focusing
is made by quadrupoles housed in the drift-space in classical DTL (Figure 3.3, left), or
outside cavities in SDTL or CCDTL (Figure 3.3, right).

The Coupled Cavity Linac (CCL) is used to accelerate higher velocity beams (β >
0.4). The phase difference between consecutive cells is π. Cells are coupled with slits
(Figure 3.4, left) or coupling cell (Figure 3.4, right) in between. The beam travel from
cell to cell when the field changes sign. The transverse focusing is made with quadrupoles
outside the cells.
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Figure 3.3: Drift Tube Linac. Right classical, Left CCDTL (Coupled Cavity DTL).

Figure 3.4: Coupled Cavity Linac (CCL).
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Superconducting cavities (Figure 3.5) can be used at all energies. Their shapes are
optimized to minimize peak fields on the surface, which are the main limitations either with
quench (peak magnetic field) or with electron emission (peak electric field). The dissipated
power is negligible compared to this transferred to the beam, but they are more complex
to use than copper cavities.

Figure 3.5: Superconducting cavities.

3.5 The travelling wave cavity
A travelling wave cavity is generally used to accelerate ultra-relativistic particles
(mostly electrons). It contains two RF ports: one through which the power enters, one to
which it exits (Figure 3.6). The electromagnetic field propagates in the cavity. Its phase
velocity is adjusted to this of the beam. Its phase is set to continuously accelerate the
beam.

The electromagnetic wave phase velocity is generally higher or equal to c. It has to be
slowed down to the beam velocity by used periodic obstacle in the guide (iris-loaded wave
guide). The periodic electromagnetic field can be developed in spatial Fourier series with
various wave numbers:

Ez(t, z) =
∞∑

n=−∞
ez,n · exp (ı (ωRFt− knz)) (3.40)

• ez,n is the amplitude of the spatial harmonic number n,

• kn is its wave number,

kn = k0 + 2π
d

· n (3.41)

31



• d is the obstacle period,

• k0 is the guide wave number.

The spatial harmonic wave number νn is:

νn = ωRF

kn

(3.42)

Particles with velocities close to this velocity exchange energy with the RF wave.

Figure 3.6: Travelling wave cavity.
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4 RF accelerator design

4.1 Synchronous particle
An accelerator (linear or circular) is designed with a synchronous particle whose trajectory
is the reference trajectory. This trajectory is a straight line in a linac, a closed orbit in
a synchrotron and a growing spiral in a cyclotron. All elements are aligned with respect
to it.

The notion of synchronism introduces an additional question: at what time and energy
particles reach elements? The synchronous particle answers to this question. It is a
hypothetical particle which would feel the perfect (as wished by the accelerator physicist)
acceleration conditions. All accelerator elements are tuned with respect to it.

It is important to understand that this synchronous particle does not belong to the beam,
but is a way to describe the ideal accelerator. The real beam particles will be represented
with respect to the synchronous particle. They ideally accompany it, crossing the elements
at a time and with energy close to these of it.

4.1.1 Example 1: synchronous particle in a synchrotron
A synchrotron1 with circumference C [m] contains RF cavities (Figure 4.1). Synchronous
particles (they are h defined below) come back turn after turn with the same phase in each
cavity. Their revolution frequency , fr [Hz], is a sub-multiple of the RF frequency, fRF
[Hz]:

fr = fRF

h
(4.1)

The integer h is the harmonic number .
The accelerator is generally tuned for only one value of h2 corresponding to:

• A velocity v [m s−1] such as:

v = C · fr = C · fRF

h
(4.2)

1A synchrotron is a circular machine of which the reference trajectory is a closed orbit invariant during
the acceleration process. This is achieved by increasing the dipole magnetic field proportionally to the
synchronous particle momentum.

2Reference trajectories associated to other values of h intercept the accelerator aperture.
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• A momentum p [kg m s−1] such as:

p = |q| ·B · ρ (4.3)

• ρ [m] is the curvature radius of the reference trajectory in dipole magnets with mag-
netic field B [T].

Figure 4.1: Schematic view of a synchrotron (here 1 cavity, 4 dipoles).

One sees that this synchronism condition does not depend on the energy gain in the cav-
ities but on the RF frequency and the reference trajectory length given by dipole magnetic
field. If none of these two parameters is changing, the synchronism is unchanged, and the
synchronous phase of synchronous particle in the cavities gives no acceleration.

The variation of at least one of these two parameters (usually by increasing the dipole
magnetic field) modifies the synchronous phase of the synchronous particle to gain energy
compatible with the synchronism condition (if cavity effective voltages are enough).

Paradoxically: acceleration is obtained by increasing dipole magnetic field (in the cavi-
ties)!

From Eq. (4.3), the higher the dipole magnetic field is, the higher the synchronous
particle momentum is. From Eq. (4.2), the RF frequency has to be increased with the
beam velocity. Increasing RF frequency on large scale is not easy (one has to change
source RF frequency as well as cavity resonance frequency). That is the reason why these
machines are mainly used with relativistic beams. Otherwise, keeping the RF frequency
while changing the velocity moves the reference trajectory (changing C and ρ) and the
reference energy (affecting (p, v)) in order to fulfil Eq. (4.2) and (4.3).

The reference particle is theoretical. Concerning real beam, the mechanism is:

• Magnetic field increase,
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• Dipolar curvature radius decrease,

• Reference trajectory length decrease,

• Synchronous phase in cavities reduction,

• Energy increase (momentum and velocity) if cavities have enough field,

• Back to synchronism (with possible change of the reference trajectory).
If the magnetic field change is slow and regular enough (adiabatic), beam particles "kindly"
accompany their associated synchronous particle.

4.1.2 Example 2: synchronous particle in a linac
A linac3 is made of nc cavities (index i ∈ {0 . . . nc − 1}).

• The distance between two consecutive cavities (i and i+ 1) is Li+1.

• The cavity field phase relative to a common reference is φi.

• The reduced energy gain of a particle with charge q [C] in the cavity is given by
Eq. (3.35):

∆γi = q · Vi

mc2 · Ti

(
γi+1/2

)
cosφs,i (4.4)

where:
– Vi [V] is the cavity voltage ,
– Ti is the transit-time factor of the particle with average energy γi+1/2,
– φs,i is the particle synchronous phase in the cavity.

• If γi is the reduced energy at entrance of the cavity i, it becomes at exit: γi+1 =
γi + ∆γi.

During the transit of the synchronous particle (reduced speed βi) between two cavities,
the RF phase changes by:

δφi = ωRF

c
· Li

βi

(4.5)

Synchronous particle should satisfy the system of 2 × i equations:

∀i,


δφi+1 = ωRF

c
· Li+1

βi+1
= 2π · n+ (φs,i+1 − φs,i)

γi+1 = γi + qVi

mc2 · Ti

(
γi+1/2

)
· cosφs,i

(4.6)

In a linac, the phase difference between cavities defines the synchronous particle.
3linac: "Linear Accelerator", particles are accelerated along a straight line.
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Figure 4.2: Schematic linac.

4.1.3 Example 3: synchronous particle in a cyclotron
A cyclotron4 is a circular accelerator in which the magnetic field is constant during accel-
eration process. The reference trajectory is a growing spiral. The main principle is the
following (Figure 4.3).

A particle with charge q [C] and mass m [kg], momentum p [kg m s−1], in a magnetic
field B [T] orthogonal to p, has a circular trajectory with a radius ρ [m] such as:

B · ρ = p

q
(4.7)

Its revolution frequency fc [Hz] is the cyclotron frequency:

fc = |q| ·B
γ ·m

(4.8)

When the particle is not relativistic (γ ≃ 1), the cyclotron frequency does not depends on
its energy, only the curvature radius is changing.

This property is used in cyclotrons where the particles make one turn crossing one of
more cavities whose RF frequency fRF [Hz] is a multiple of cyclotron frequency :

fc = h · fRF (4.9)

This is the synchronism relation in the cyclotron. It depends on the magnetic field, the RF
frequency and the particle charge and mass. The synchronism does not depend explicitly
on the particle phase. Only the number of turns necessary to exit (or not) the cyclotron
depends on it.

Cyclotrons are essentially used to accelerate non-relativistic beams, especially for heavy
ions. When γ change is not negligible, the synchronism can be conserved either by changing
the RF frequency or by changing the magnetic average field over one turn. Otherwise,
particles will become later and later with respect to the RF field and could finally be
decelerated before reaching the cyclotron exit. The input phase windows (acceptance)
allowing particles to exit the cyclotron will be reduced.

4A cyclotron is a circular accelerator in which the magnetic field is constant. The beam acceleration
implies an increase of the reference trajectory radius
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Figure 4.3: Synchronism principle of the cyclotron (B. Jacquot, GANIL ).

4.2 Synchronous phase choice
The synchronous particle is a property of the accelerator. We will see later that all longi-
tudinal beam dynamics is developed with respect to it. It approaches the particle average
phases and energies along the linac. The accelerator is designed (phase and amplitude law
in the cavities and curvature in dipoles) according to it.

Two conditions on the synchronous phase of the synchronous particle in the RF cavities
should be met:

□ Acceleration condition: The electric field should accelerate the synchronous particle.
Then the synchronous phase should be in [−90°, 90°] if the energy gain is G =
|q| · V0T · cosφs (cosine convention , mainly used in linacs) or in [0°, 180°] if the
energy gain is G = |q| ·V0T · sinφs (sine convention , mainly used in synchrotrons).
Unfortunately both conventions can be found in literature. The consequence is that
the motion equations are depending on it. Jumping from one to the other makes use
of the relation: cosφ = sin (φ+ π/2).

□ Stability condition: In order to keep the beam particles bunched, energy gain should
allow late particles to catch up early ones (and reciprocally). Two cases are then
possible:

◦ In a linac, highest energy particles, with higher velocity, move ahead of the
bunch. The energy gain should then be growing for the synchronous particle in
order to give more energy to late particles than to early particles.

◦ In a synchrotron, higher energy is higher velocity but also higher magnetic
rigidity with higher curvature radius in magnets and, usually, longer one turn
trajectory. Knowing if a higher energy particle be become latter or earlier is then
a competition between these two phenomena. The parameter discriminating
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these effect is η, defined as:

η= p

fr

dfr

dp
= dfr/fr

δ
(4.10)

where fr is the particle revolution frequency and p the particle momentum.
∗ if η > 0, a higher energy particle turns faster (linacs and low energy syn-

chrotron cases),
∗ if η < 0, a higher energy particle turns slower (high energy synchrotron

case).
From Eq. (4.2), one gets:

dfr

fr

= dβ

β
− dC

C
(4.11)

From γ−2 = 1 − β2, one gets dβ
β

= δ
γ2 .

And finally:

η = γ−2 − dC/C
δ

= γ−2 − α (4.12)

with α ≡ dC/C
δ

= dR/R

δ
(4.13)

α is the momentum compaction associated to the synchrotron.
The γ value, γt, for which η = 0, is the transition energy .

∗ When energy is low enough (γ < γt), then η > 0. Higher energy particles
move ahead of the bunch. The stability is then dominated by the velocity
variation (as in a linac). The energy gain should be increasing around
synchronous particle.

∗ When energy is high enough (γ > γt), then η < 0. Lower energy particles
move ahead of the bunch. The stability is then dominated by the trajectory
length variation. The energy gain should be decreasing around synchronous
particle.

We compute in Table 4.1, the useful synchronous phase. It is illustrated on Figure 4.4.

4.3 Momentum compaction
The momentum compaction α given in (4.13), is null when the path length does not depend
on the particle momentum (at first order). This variation appears in the dipoles. Then,
the momentum compaction in a linac is null.

The periodic dispersion function Dp [m] (seen in transverse dynamics lecture) repre-
sents the distance dx [m], in horizontal plan, between:
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Table 4.1: Useful synchronous phases
η > 0 (linac, LE synchrotrons) η < 0 (HE synchrotrons)

Convention G ∝ cosφ G ∝ sinφ G ∝ cosφ G ∝ sinφ
Acceleration condition [−90°, 90°] [0°, 180°] [−90°, 90°] [0°, 180°]

Stability condition [−180°, 0°] [−90°, 90°] [0°, 180°] [90°, 270°]
Useful condition [−90°, 0°] [0°, 90°] [0°, 90°] [90°, 180°]

Figure 4.4: Synchronous phase for the particles

• the closed orbit around which particles with momentum p = ps (1 + δ) oscillate, and,

• the synchronous particle (p = ps) closed orbit.

normalized to the particle momentum normalized difference. Then:

Dp = dx

δ
(4.14)

Assuming an accelerator made of n dipoles with curvature radius ρ [m] and n drift spaces
with length L [m], one has:

C = 2π · ρ+ n · L = 2πR (4.15)

The trajectory C of particles with non-nominal momentum is elongated in the dipoles at
first order:

dC = 2π
(
ρ+ ⟨dx⟩dipoles

)
− 2πρ = 2π · ⟨Dp⟩dipoles · δ (4.16)

The average is made over dipoles.
The momentum compaction is then:

α =
⟨Dp⟩dipoles

R
(4.17)

39



Figure 4.5: Design closed orbit (left) and chromatic closed orbit (right). Particles, depend-
ing on their momentum, oscillate around these closed orbits.
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5 Longitudinal dynamics in a RF
accelerator

5.1 Phase-space
In a description where the independent variable (the changing quantity according
to which the evolution is described) is time t [s], a particle is generally represented in
longitudinal space with 2 coordinates:

• z [m] the particle longitudinal position on reference trajectory at t,

• pz, [kg m s−1], its momentum longitudinal component at t.

In a description where the independent variable is the curved abscissa s [m] on reference
trajectory, a particle is generally represented in longitudinal space with 2 coordinates:

• φ, [rad], the particle phase (time normalized to RF frequency) when reaching s,

• E, [J], its particle kinetic energy when reaching s.

In the following, we will focus in a description with s as an independent variable.

5.2 Phase evolution in a drift space
The evolution of the particle phase φ in a drift space (without any field) is given by:

dφ

ds
= 2πfRF

vz

= 2π
βz · λRF

(5.1)

• fRF [Hz] is the RF frequency,

• vz = βz · c [m s−1] is the longitudinal component of the particle velocity,

• c [m s−1] is the physical constant corresponding to the speed of light in vacuum,

• λRF [m] is the RF wavelength.
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5.3 Energy evolution
The energy gain ∆E [J] of a particle with charge q [C] in an RF cavity with potential V0
[V] is modelled by Eq. (3.35):

∆E = q · V0T sinφ (5.2)

• T is the transit time factor of the particle in the cavity,

• φ is the particle synchronous phase in the cavity.

Sine convention has been chosen here (see p. 37). This choice has been taken to insure
the compatibility with CERN Accelerator School and JUAS (Joint University Accelerator
School) lectures. Following equations could be changed to cosine convention by replacing
φ by φ− π/2.

5.4 Reference to synchronous particle
All beam particles are referenced to the synchronous particle whose phase φs and kinetic
energy Es are solutions of the same equations.

Each particle is represented by its relative phase ϕ [rad] to this of synchronous particle
and its relative kinetic energy δE [J] to this of synchronous particle:

ϕ = φ− φs (5.3)
δE = E − Es (5.4)

In reality, behaviours of the particle phase and kinetic energy also depend on the transverse
position (see p.28). Nevertheless, the dependance is weak and can be neglected in the
simplest case. This corresponds to longitudinal coordinate evolution of a particle on the
reference trajectory.

Let us s assume that:

• T (r) = T , the transit time factor does not depend on the transverse position,

• βz = β, the particle velocity is along longitudinal direction (paraxial approximation).

In a drift space, the evolution of ϕ with s is given by Eq. (5.1):

dϕ

ds
= 2π
λRF

(
1
β

− 1
βs

)
(5.5)

Assuming particles with close velocities and energies:

• β−βs

βs
≪ 1

• δE
Es

≪ 1
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One gets:

dϕ

ds
= − 2π

λRF

δE

β3
sγ

3
smc

2 (5.6)

The motion in (ϕ, δE) phase-space of the particle in a drift is shown in left part of Figure 5.1.
Particles with higher energy (and velocity) get ahead of those with lower energy.

The energy gain evolution δE in the cavities are:

∆δE = q · V0T (sinφ− sinφs) (5.7)

then

∆δE = q · V0T (cosφs · sinϕ− sinφs · (1 − cosϕ)) (5.8)

The motion in (ϕ, δE) phase-space of the particle in a drift is shown on right part of
Figure 5.1. In the growing field (φs ∈ [−90°, 90°]), early particles (ϕ < 0) gain less energy
than late ones (ϕ > 0).

Figure 5.1: Particle phase-space trajectories in a drift (left) and a cavity (right).

5.5 Periodic focusing – continuous focusing
In a real machine, the beam travels alternatively through accelerating cavities and through
drift spaces without acceleration.

The cavity of length L can be modelled by an accelerating-focusing thin gap surrounded
by two drift whose total length is L. In the gap, particle energy gain is given by Eq. (5.8).
In the drift, only the phase changes following Eq. (5.6).

In a periodic channel made of cavities and drifts, particles are turning in the (phase-
energy) phase-space with horizontal motion (phase change) in drifts and vertical motion
(energy change) in gaps. This motion is known as the synchrotron oscillation . It
is equivalent to the betatron oscillation in the transverse phase-space (x − x′). On
Figure 5.1, the particle motions in the phase space through drift (left) and gaps (right)
are plotted. In these conditions, particles are turning counter-clockwise as particles with
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lower energy get later with respect to these with higher energy. Let us remind that this
corresponds to η > 0 (see η definition, p. 38).

If η < 0, the average motion in drift space is plotted at left of Figure 5.2. Particles
with higher energy get late. In order to have a stable motion, the energy gain of early
particle should be higher than this of late particles (at right of Figure 5.2). Particles are
then turning clockwise.

Figure 5.2: Particle motion in longitudinal phase-space in dipolar spaces when η < 0 (left)
and in cavities (right).

The synchrotron phase advance per lattice σs, in longitudinal dynamics, is the
fraction of synchrotron oscillation, multiplied by 360° (or 2π). It is equivalent to the
betatron phase advance in transverse dynamics. For example, if a synchrotron oscillation
is travelled in 6 periods, the phase advance is: 360° × 1/6 = 60°.

Two channels are said equivalent if their phase advances per unit length ks (the
phase advance per lattice divided by the period length) are the same. On Figure 5.3 two
equivalents channels have been plotted, one has a twice longer period and a twice bigger
phase advance per lattice.

Figure 5.3: Schematic view of two equivalent channels.

We plot on Figure 5.4 the particle phase-space trajectory in equivalent channel with
phase advance per lattice of 60°, 30°, 10°, 5°, 2°, and 1° (and associated periods varying
from 1 to 1/60). The synchronous phase is 0° (sine convention1, η > 0). The synchronous
particle energy gain is null. The amplitude of phase oscillation is about 20°.

1Or −90° with cosine convention.
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The lower the phase-advance per lattice is, the more regular the trajectory becomes (an
ellipse if linear force). When the phase-advance goes to zero, the channel tends to its
equivalent continuous focusing channel .

Figure 5.4: Particle phase-space trajectory in equivalent channels for various phase-advance
per lattice.

Figure 5.5 gives the evolution of the V0T/L for equivalent channel as a function of the
phase-advance per lattice σs. When σs is tends to 0, V0T/L tends to E0T corresponding
to the field in an equivalent continuous focusing channel.

In this continuous focusing channel, the particle relative phase and energy in a linac
(with no dipole) can be deduced from Eq. (5.6) and Eq. (5.8):

dϕ

ds
= − 2π

λRF

δE

β3
sγ

3
smc

2

dδE

ds
= q · E0T (cosφs · sinϕ− sinφs · (1 − cosϕ))

(5.9)

In order to simplify the calculations, one considers, from now, that particles propagate
in a continuous focusing channel. This assumption is very close to reality at high energy
where the phase-advance per lattice is usually small. At lower energy, when it is higher,
this gives nevertheless a good approximation and understanding of the reality.
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Figure 5.5: Average electric field in equivalent periodic channels as a function of the phase-
advance per lattice.

5.6 Synchrotron oscillation
5.6.1 Synchrotron case
In Eq. (5.9), we considered the phase evolution as if it was only in a drift space (no
dipole). In a circular synchrotron, the inter-cavities spaces can house dipoles in which
energy dispersion elongates the trajectories of higher energy particles. We recognize here
the effect of the momentum compaction which does not exist in the linac.

In a synchrotron, Eq. (5.9) is then modified to take into account this effect by replacing
1/γ2

s exhibiting the velocity effect in linac by η (see p. 38) exhibiting the balance between
velocity and trajectory elongation effects.

One then gets the general formulation of the synchrotron motion in linac or synchrotron.

5.6.2 General formulation
The particle motion is described by equation system:

dϕ

ds
= −2πη

λRF

δE

β3
sγsmc2

dδE

ds
= q · E0T (cosφs · sinϕ− sinφs · (1 − cosϕ))

(5.10)
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Deriving the first equation and injecting into the second:

d2ϕ

ds2 = −2πη
λRF

q · E0T

β3
sγsmc2 · (cosφs · sinϕ− sinφs · (1 − cosϕ)) (5.11)

This is a non-linear oscillator equation. Its solution is not straightforward. Its
solution is periodic (if its second term is negative when ϕ is positive), showing that particles
oscillate around synchronous particle (no variation of ϕ when ϕ = 0). This motion is the
synchrotron oscillation described earlier.

5.7 Phase-space trajectory
5.7.1 Hamiltonian
Let us come back to the system Eq. (5.10):

dϕ

ds
= −2πη

λRF

δE

β3
sγsmc2

dδE

ds
= q · E0T (cosφs · sinϕ− sinφs · (1 − cosϕ))

(5.12)

This motion can be described using function called the Hamiltonian 2 H(ϕ, δE):
dϕ

ds
= − ∂H

∂δE
dδE

ds
= ∂H

∂ϕ

(5.13)

with:

H(ϕ, δE) = πη

λRF

δE2

β3
sγsmc2 + q · E0T (cosφs · (1 − cosϕ) − sinφs · (ϕ− sinϕ)) (5.14)

H, is set within a constant adjusted to have H(ϕ = 0, δE = 0) = 0.
One notes that:

dH
ds

= ∂H
∂ϕ

· dϕ
ds

+ ∂H
∂δE

· dδE
ds

= 0 (5.15)

This absolute derivative of the Hamiltonian corresponds to the H variation along particle
trajectory (Lagrange derivative). Particles are then moving in phase-space on curves on
which H is constant3, whose equations are:

H(ϕ, δE) = H(ϕ0, δE0) = constant (5.16)
2This should be found in your general mechanics lectures. One can simply consider it as a function of

phase-space coordinates in which particles are moving orthogonally to their gradient.
3In a continuous focusing channel. Otherwise, particles are following, at each time, the trajectories

orthogonal to the gradient of H.
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ϕ0, δE0 being the particle initial conditions.
Some particle trajectories in (φ, dE) phase-space have been plotted from Figure 5.6 to

Figure 5.8 for various φs (60°, 30°, 0°), for η > 0 and using sine convention. In each case,
the average fields are the same and the energy differences dE have been normalized by the
same factor.

Closed curves inside the red closed one are the stable trajectories. This red curves,
known as the separatrix , is the boundary of the stability region known as the bucket .
Their sizes will be calculated later on.

One sees that the closer from 0° φs is, the bigger the bucket is (both in phase and
energy), but the smaller the average energy gain is. For η > 0, particles are turning
counter-clockwise in stable region. For η < 0, particles are turning clockwise.

Figure 5.6: Particle trajectories in longitudinal phase-space for 60° synchronous phase.

Open curves show trajectories of unhooked particles (not accelerated with the syn-
chronous particle). They correspond to particles with initial phase and energy too far
from synchronous particle. These particles will cross cavities when effective voltage is
either negative or positive and will feel no average energy gain. They will then lose pro-
gressively energy compared to the synchronous particle (if accelerated). Figure 24 exhibits
the trajectory of unhooked particles over 3 periods. The particle lost from the first (left)
bucket (at 1) is crossing following buckets (2 and 3) without being caught-up by them. Its
relative energy is then falling down.

5.7.2 Bucket sizes
In order to fulfil acceleration and stability conditions, the synchronous phase φs should be,
in sine convention, in [0, 90°] if η > 0 and in [90°, 180°] if η < 0.
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Figure 5.7: Particle trajectories in longitudinal phase-space for 30° synchronous phase.

Figure 5.8: Particle trajectories in longitudinal phase-space for 0° synchronous phase.
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Figure 5.9: Phase-space trajectory of an unhooked particle over 3 periods. Synchronous
phase is 60°.

• For η > 0, a particle with the same energy but late (ϕ > 0) compared to the syn-
chronous particle should gain more energy in the cavities.

• For η < 0, a particle with the same energy but late (ϕ > 0) compared to the syn-
chronous particle should gain less energy in the cavities.

These conditions impose (at maximum): ϕ = π − φs, then ϕ = π − 2φs (see Figure 5.10).
This is the upper phase limit of the bucket.

Figure 5.10: Bucket phase size.
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The particle Hamiltonian is then:

H(π − 2φs, 0) = q · E0T (cosφs · (1 + cos (2φs)) − sinφs · ((π − 2φs) − sin (2φs))) (5.17)

Then:

H(π − 2φs, 0) = 2q · E0T
(

cosφs − sinφs ·
(
π

2 − φs

))
(5.18)

The lower phase limit of the bucket corresponds to the phase ϕ < 0 for which:

H(ϕ, 0) = H(π − 2φs, 0) (5.19)

Then:

cosφs · (1 − cosϕ) − sinφs · (ϕ− sinϕ) = 2 cosφs − sinφs · (π − 2φs) (5.20)

The analytical solution of this equation is not simple. Its evolution as a function of φs

is given in Figure 5.11. The lower limit corresponds to the phase for which the surface in
dash-blue in Figure 5.10 equals the surface in dash-red.

The energy limit (or acceptance) δEmax is the maximal energy difference which can
be achieved by a particle of the bucket (with a zero relative phase). One has:

H(0, δEmax) = H(π − 2φs, 0) (5.21)

then :

δEmax =
√

2q · E0T
(

cosφs − sinφs ·
(
π

2 − φs

))
· β

3
sγsmc2λRF

πη
(5.22)

In order to go from sine convention to cosine convention, changes have to be done:

cosφs → sinφs

sinφs → − cosφs

(π/2 − φs) → −φs

(5.23)

The energy acceptance depends on accelerating field amplitude contrary to the phase
acceptance.

Bucket phase and energy sizes (acceptances) are plotted in Figure 26 as a function of
synchronous phase.

5.7.3 Low amplitude
At low amplitude, we can develop Eq. (5.14) at first order assuming |ϕ| ≪ 1. On gets:

H(ϕ, δE) = πη

λRF

δE2

β3
sγsmc2 + q · E0T · cosφs · ϕ

2

2 (5.24)
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Figure 5.11: Bucket phase and energy sizes as a function of the synchronous phase (sine
convention).

This is an ellipse equation. As seen in transverse dynamics, the particle phase space
trajectory with small amplitude (in linear forces) is an ellipse.

A first order development of Eq. (5.11) gives:
d2ϕ

ds2 = −2πη
λRF

q · E0T

β3
sγsmc2 · cosφs · ϕ (5.25)

This is a harmonic oscillator equation. Its pulsation Ωs,0 [rad s−1] is:

Ωs,0 =
√

2πη
λRF

q · E0T

β3
sγsmc2 · cosφs · βsc (5.26)

The longitudinal phase-advance per lattice (of length L) σL is:

σL = Ωs,0

βsc
L =

√
2πη
λRF

q · E0T

β3
sγsmc2 · cosφs · L (5.27)

The synchrotron wave number Qs,0 is the number of synchrotron oscillations of the
particles in on turn of a circular accelerator:

Qs,0 = Ωs,0

2πfr

(5.28)

Then:

Qs,0 =
√

η

2π · λRF · C2
q · E0T

β3
sγsmc2 · cosφs (5.29)
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5.7.4 Wave number dispersion
Equation (5.29) is the wave number for small amplitude oscillations (when the force is
close to linear). However, for higher amplitude, the force is no more linear and the wave
number is a function of the amplitude. We have:

Qs = C
S

= C

2
ϕmin∫
ϕmin

dϕ
dϕ/ds

(5.30)

S is the distance travelled by the particle over one synchrotron oscillation.
Noting that:

dϕ

ds
= −2πη

λRF

δE

β3
sγsmc2 (5.31)

One gets:

Qs = − 2π · η · C
λRFβ3

sγsmc2 · 1

2
ϕmin∫
ϕmin

dϕ
δE(ϕ)

(5.32)

We considered here a constant (or slowly varying) energy over one synchrotron period.
δE is obtained from Hamiltonian of Eq. (5.14)

δE =
√
β3

sγsmc2 · λRF

πη
(H0 + q · E0T (sinφs · (ϕ− sinϕ) − cosφs · (1 − cosϕ))) (5.33)

One has:
H0 = H (ϕmin, 0) = H (ϕmax, 0)

= q · E0T (cosφs · (1 − cosϕmax) − sinφs · (ϕmax − sinϕmax)) (5.34)
Let us write Qs/Qs,0 from Eq. (5.29) and Eq. (5.32)

Qs/Qs,0 =
√

2π
ϕmin∫
ϕmin

√cosφsdϕ√
|H0/(qE0T ) + sinφs · (ϕ− sinϕ) − cosφs · (1 − cosϕ)|

(5.35)

then

Qs/Qs,0 =
√

2π
ϕmin∫
ϕmin

dϕ√
|(cosϕ− cosϕmax) + tanφs ((ϕ− ϕmax) − (sinϕ− sinϕmax))|

(5.36)

Integration in Eq. (5.36) cannot be solved analytically, but numerically. We plotted in
Figure 5.12 the evolution of the wave number normalized to this at very low amplitude as a
function of the oscillation amplitude normalized to the bucket phase limit with 3 different
synchronous phases. The wave number goes down with amplitude. Particles close to the
separatrix have almost no synchrotron oscillation.
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Figure 5.12: Wave number normalized to this at very low amplitude as a function of the
oscillation amplitude normalized to the bucket phase limit with 0°, 30° and
60° synchronous phases.

5.8 Beam slowly accelerated
Let us come back to the system Eq. (5.10):

dϕ

ds
= −2πη

λRF

δE

β3
sγsmc2

dδE

ds
= q · E0T (cosφs · sinϕ− sinφs · (1 − cosϕ))

(5.37)

One can extract the second order differential equation giving the evolution of ϕ as a
function of s:

d

ds

(
β3

sγs

η
· dϕ
ds

)
= − 2π

mc2 · λRF
q · E0T (cosφs · sinϕ− sinφs · (1 − cosϕ)) (5.38)

then:

d2ϕ

ds2 + αa · dϕ
ds

= − 2π · η
β3

sγs ·mc2 · λRF
q · E0T (cosφs · sinϕ− sinφs · (1 − cosϕ)) (5.39)

The coefficient αa = d
ds

(
β3

s γs

η

)/(
β3

s γs

η

)
is a damping term due to acceleration.

The phase oscillation amplitude will be reduced during accelerator.
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straight line, 33
superconducting cavities, 31
surface resistance, 23
synchronism, 33
synchronous particle, 33
synchronous phase, 27
synchrotron oscillation, 43, 47
synchrotron phase advance per lattice, 44
synchrotron wave number, 52

thin gap, 43
time, 5
total energy, 5
transit time factor, 25
transition energy, 38
transverse plane, 4
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