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1.Space-charge force
Generalities on fields: static model



Maxwell equations 

∇ · E = ρ

ϵ0

∇ × E = −∂B
∂t

∇ · B = 0

∇ × B = µ0 · j + 1
c2
∂E
∂t

These charge ρ and current j densities are:
■ those of the beam (direct space-charge),
■ those induced in surrounding material (indirect space-charge).
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Field produced by charge and current densities



■ Simplified model: static
■ Numerical resolution
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Two solutions



Continuous beam
One assumes that charge and current distributions at a given position are stationary. Fields are
then invariant with time and electric and magnetic fields are independent.

ρ(r, t), j(r, t) −→ ρ(r), j(r)

Bunched beam frame
In the beam frame, the particle relative displacements are generally non-relativistic and field is
mainly electrostatic.

E∗(r, t), B∗(r, t) β∗≪1−−−−→ E∗(r), 0 Lorentz−−−−−→
transform

E(r, t), B(r, t)

Except in specific cases, the magnetic field is not directly computed but the magnetic force is
deduced from the electric force.
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Static model: application case



A still charge density ρ [C m−3] produces an electrostatic field:

E [V m−1] solution of equations :

 ∇ · E = ρ

ϵ0
∇ × E = 0

The solution of two coupled equations is not obvious as once we found a solution of the first, it
has to satisfy the second one.

It is then easier to solve a unique equation by remarking that ∇ × (∇f ) = 0, whatever f .

Defining: E = −∇ϕ With ϕ [V] the scalar electrostatic potential.
The system becomes:

∇ · (∇ϕ) = ∆ϕ = − ρ

ϵ0
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Electrostatic field
Charge distribution



A current flux j [A m−2] produces a magnetic field:

B [T] solution of equations :
{

∇ × B = µ0 · j
∇ · B = 0

The solution of two coupled equations is not obvious as once we found a solution of the first, it
has to satisfy the second one.

It is then easier to solve a unique equation by remarking that ∇ · (∇ × f) = 0, whatever f .

Defining: B = ∇ × A With A [T m] the magnetic vector potential.
The system becomes:

∇ × (∇ × A) = µ0j
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Magnetostatic field
Current distribution
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1.Space-charge force
Continuous beam



ρ(x , y , z) → ρ(r)
j(x , y , z) → j(r)ez

r =
√

x2 + y2

Gauss theorem:
v

E · dS =
t

ρdτ
ϵ0

Er (r) = 1
ϵ0 · r

∫ r

0
r ′ · ρ(r ′) · dr ′

Ampere theorem:
∮

B × dl = µ0
t

jdS

Bθ(r) = µ0

r

∫ r

0
r ′ · j(r ′) · dr ′
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Cylindrical continuous beam



Charge per linear meter:

ρ(r) = λ0

2πr
· δ(r) −→ Er (r) = λ0

2πϵ0
· 1

r

Uniform beam: electric field linear with r in beam

ρ(r) =
{

λ
π·R2

h
if r < Rh

0 otherwise
−→ Er (r) =

{
λ

2πϵ0
· r

R2
h

if r < Rh

λ
2πϵ0

· 1
r otherwise

Gaussian beam:

ρ(r) = λ

2πσ2
r

· exp
(

− r2

2σ2
r

)
−→ Er (r) = λ

2πϵ0
· 1

r
·
(

1 − exp
(

− r2

2σ2
r

))
■ λ [C m−1] is the charge per linear meter: λ = I

β̄·c
■ I [A] is the beam current
■ β̄ is the beam particle average velocity
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Cylindrical continuous beams
Some examples



Assuming that all particles have the same velocity: v = β̄zc · uz

j(r) = ρ(r) · β̄zc · uz −→ Bθ(r) = µ0 · c
r

· β̄z ·
∫ r

0
r ′ · ρ(r ′) · dr ′ = Er (r) · β̄z

c

The force on each particle with charge q and longitudinal reduced velocity βz is:

Fr = q (Er − vz · Bθ + vθ · Bz) = q (Er − βzc · Bθ)
Fr = q · Er (r) ·

(
1 − βz · β̄z

)
Paraxial approximation: β2 = β2

x + β2
y + β2

z ≈ β2
z

Fr = q · Er (r) ·
(
1 − β2)

= q · Er (r)
γ2

Fr scales with 1/γ2: Laplace force mitigates Coulomb repulsion.
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Cylindrical continuous beam
electric – magnetic forces



ρ(x , y , z) =
{

λ
π·X ·Y if x2

X 2 + y2

Y 2 < 1
0 otherwise

Ex(x , y) = λ

4π2 · ϵ0 · X · Y

∫ Y

−Y
dy ′ ·

∫ X
√

1−y2/Y 2

−X
√

1−y2/Y 2
dx ′

x − x ′(
(x − x ′)2 + (y − y ′)2

)3/2

Ey (x , y) = λ

4π2 · ϵ0 · X · Y

∫ X

−X
dx ′ ·

∫ Y
√

1−x2/X 2

−Y
√

1−x2/X 2
dy ′

y − y ′(
(x − x ′)2 + (y − y ′)2

)3/2


Ex(x , y) = λ

π · ϵ0
· 1

X + Y
· x

X

Ey (x , y) = λ

π · ϵ0
· 1

X + Y
· y

Y

(In beam)

Electric field linear with position
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Elliptical uniform continuous beam



Antoine Chancé NPAC-2023 31 October 2023 14 / 74

1.Space-charge force
Numerical methods



The space-charge field produced by a set of N particles can be calculated with different
space-charge routines:

■ PPI (Particle-Particle Interactions) methods
■ PIC (Particles in cells) methods

■ direct,
■ FFT,
■ relaxation.

■ Functional methods
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Numerical methods



At each time step, the field contribution of all particles is calculated at the position of each
particle:

E(ri) =
N∑

j ̸=i

qj

4πϵ0
ri − rj∥∥ri − rj

∥∥3

Advantages
■ No mesh
■ Easy to compute

Drawbacks
■ Long (∝ N2),
■ Artificially colliding
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PPI (Particle-Particle Iteraction) Method



■ Particles are counted in a mesh with n lattices
■ In the direct method, the influence of the density in each lattice is calculated on each mesh

node.
Advantages

■ Low noise (charge smoothing on the mesh)
Drawbacks

■ Long (∝ n2),
■ No image charge.
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PIC (Particles in Cells) method



ϕ(x0, y0, z0) = 1
4πϵ0

y

space

ρ(x , y , z)√
(x − x0)2 + (y − y0)2 + (z − z0)2

dx · dy · dz

= (ρ ∗ G) (x , y , z)

With :G = 1
4πϵ0

· 1√
x2 + y2 + z2

.

Then: ϕ(x , y , z) = FFT−1 (FFT (ρ) × FFT (G))
Advantages

■ Fast (∝ n · log(n))
Drawbacks

■ Noisy.
■ No image charge.
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PIC FFT method



Illustration in 1D : ∂2ϕ
∂x2 = − ρ(x)

ϵ0
= ρ′(x)

On each lattice: ϕi+1 − 2ϕi + ϕi−1 = ρ′i · δ2

Iterative process k : ϕk+1
i = ϕk

i + α

(
ϕk

i+1+ϕk
i−1−ρ′

i ·δ
2

2 − ϕk
i

)
Advantages

■ Could be fast (∝ n · log(n), for multigrid)
■ Image charge

Drawbacks
■ Limit condition should be defined (or assumed).
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PIC relaxation method



ρ(r) =
∑

j

Aj · Pj(r) with: Aj =
N∑

i=1

F
(
ρ (ri) , Pj (ri)

)
with Pj such as: ∆Γj(r) = Pj(r)

⇒ ϕ(r) =
∑

j

Aj · Γj(r)

Advantages
■ Mathematically smart.

Drawbacks
■ Very long,
■ Noisy,
■ No image charge
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Functional method
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2.Linear(ized) motion
Beam statistical representation



Beam: Set of billions (N) of particles evolving with an independent variable s (time, curved
abscissa...)
Macro-particle model: → Set of n macro-particles (n < N)

6 coordinates :
■ 3 for position: r

(Cartesian, cylindrical...)
■ 3 for motion: p

(velocity, momentum, energy, slope...)

Distribution function model: → function

f (r, p) · d3r · d3p
Expected number of particles
between r and r + dr
between p and p + dp
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Statistical representation



Average value of A (r, r′) over the beam:

⟨A (r, r′)⟩ = 1
n

n∑
i=1

A (ri , r′i ) = 1
N

x
d3f (r, r′) · A (r, r′) d3r′

■ Examples:
C.o.g position: (⟨u⟩ , ⟨u′⟩)

RMS size: urms = √
σu =

√〈
(u − ⟨u⟩)2

〉
RMS slope: u′rms = √

σu′ =
√〈

(u′ − ⟨u′⟩)2
〉

RMS coupling: uu′rms = σuu′ = ⟨(u − ⟨u⟩) · (u′ − ⟨u′⟩)⟩
RMS emittance: ϵu,rms =

√
u2

rms · u′2rms − (uu′rms)
2
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RMS sizes



The ellipse matching the best the beam distribution is:

γt ,u · u2 + 2αt ,u · u · u′ + βt ,u · u′2 = Au

Such as:

βt ,u = u2
rms

ϵu,rms
= σu

ϵu,rms

γt ,u = u′2rms
ϵu,rms

= σu′

ϵu,rms

αt ,u = −uu′rms
ϵu,rms

= − σuu′

ϵu,rms

Are the beam’s Twiss Parameters.
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Twiss parameters



Particle 6D phase-space coordinates can be:

ν =


ν1
ν2
ν3
ν4
ν5
ν6




x
px
y
py
z
pz

 or


x
x ′

y
y ′

φ
E

 for example

Beam distribution can be modelled by a variance-covariance matrix:

[σ] such as: σij =
〈
νi · νj

〉
The sigma matrix.

One has:
[σ]e = [Te←s] · [σ]s · [Te←s]T

Te←s is the transfer matrix from s to e.
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6D model
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2.Linear(ized) motion
Envelope equations



Particle dynamics:
dp
dt

= F(r, p; t) ⇒ dp
ds

= F(r, p; s)
βz · c

Magnetic field, no acceleration, transverse motion :

⇒


d (x ′ · βz)

ds
= Fx(r,β, s)
γ · βz · m · c2

d (y ′ · βz)
ds

=
Fy (r,β, s)
γ · βz · m · c2

Linac + paraxial approximation: β2
x + β2

y ≪ β2
z ≈ β2

⇒


dx ′

ds
= Fx(r,β, s)
γ · β2

z · m · c2 = F ′x(r,β, s)

dy ′

ds
=

Fy (r,β, s)
γ · β2

z · m · c2 = F ′y (r,β, s)
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Transverse motion equation



x̃2 =
〈
x2〉

x̃ x̃ ′ = ⟨xx ′⟩
x̃ ′2 + x̃ x̃ ′′ =

〈
x ′2

〉
+ ⟨xx ′′⟩

x̃ ′′ =
〈
x ′2

〉
+ ⟨xx ′′⟩
x̃

− x̃ ′2

x̃

x̃ ′′ =
〈
x ′2

〉
+ ⟨xx ′′⟩
x̃

− ⟨xx ′⟩2

x̃3

x̃ ′′ =
〈
x ′2

〉
+ ⟨xx ′′⟩

⟨x2⟩1/2 − ⟨xx ′⟩2

⟨x2⟩3/2
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Envelope equation (1)



RMS size evolution: x̃ ′′ = x ′′rms =
〈
x ′2

〉
+ ⟨x · x ′′⟩

⟨x2⟩1/2 − ⟨x · x ′⟩2

⟨x2⟩3/2

By noting that: ⟨x · x ′′⟩ = ⟨x · F ′x (r,β, s)⟩

One gets: x̃ ′′ − K̃x · x̃ − ϵ̃2x
x̃3 = 0

ϵ̃x =
√

⟨x ′2⟩ · ⟨x2⟩ − ⟨x · x ′⟩2 The horizontal rms emittance

K̃x = ⟨x · F ′x (r,β, s)⟩
x̃2 The force linearisation coefficient

The linearised force can be applied to the envelope equation or as a transfer matrix (with sigma
matrix).
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Envelope equation (2)



Antoine Chancé NPAC-2023 31 October 2023 30 / 74

2.Linear(ized) motion
Space-charge linearisation



Fx (r, p, s) linearisation−−−−−−→ kx · x

Interest:
■ Easy
■ Fast
■ Efficient

⇒ Equivalent uniform beam
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Motion linearisation



Definition of equivalent beams
Two beams are said " equivalent " when they carry the same current (continuous) or charge
(bunched) and they have the same sigma matrix.

Example of distribution of continuous equivalent beams:

*
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Equivalent beams



d ϵ̃2x
ds

=
d

〈
x ′2

〉
ds

·
〈
x2〉

+
〈
x ′2

〉
·

d
〈
x2〉

ds
− 2 ⟨x · x ′⟩ · d ⟨x · x ′⟩

ds
= 2 ⟨x ′ · x ′′⟩ ·

〈
x2〉

+ 2
〈
x ′2

〉
· ⟨x · x ′⟩ − 2 ⟨x · x ′⟩ ·

(〈
x ′2

〉
+ ⟨x · x ′′⟩

)
= 2

(
⟨x ′ · x ′′⟩ ·

〈
x2〉

− ⟨x · x ′⟩ · ⟨x · x ′′⟩
)

If the force is linear:
x ′′ = k · x

The emittance is constant:

d ϵ̃2x
ds

= 2 · k ·
(
⟨x ′ · x⟩ ·

〈
x2〉

− ⟨x · x ′⟩ ·
〈
x2〉)

= 0

Rms emittance is conserved in linear force, otherwise it can increase or decrease !
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RMS emittance evolution



ρ(x , y) =
{
ρ0 if x2

X 2 + y2

Y 2 < 1
0 otherwise

We have:
{

x̃ = X/2
ỹ = Y/2

and: ρ0 = I
π · X · Y · v

Space-charge force
K̃SC,x = q · I

2πϵ0m (γβc)3 · 2
X · (X + Y ) = 2 · K

X · (X + Y )

K̃SC,y = q · I
2πϵ0m (γβc)3 · 2

Y · (X + Y ) = 2 · K
Y · (X + Y )

Generalized perveance

K = q · I
2πϵ0m (γβc)3
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Uniform continuous beam




X ′′ + k2

x ,0(s) · X − 2K
X + Y

−
ϵ2x ,eff
X 3 = 0

Y ′′ + k2
y ,0(s) · Y − 2K

X + Y
−
ϵ2y ,eff

Y 3 = 0

These are the beam 2D envelope
equations

ϵx ,eff = 4 · ϵ̃x the effective emittance of the continuous beam.

Or, valid whatever the elliptical beam transverse distribution:

Beam RMS 2D envelope equations


x̃ ′′ + k2

x ,0(s) · x̃ − K/2
x̃ + ỹ

− ϵ̃2x
x̃3 = 0

ỹ ′′ + k2
y ,0(s) · ỹ − K/2

x̃ + ỹ
−
ϵ̃2y
ỹ3 = 0
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Continuous beam envelope equations




x̃ ′′ + k2

x ,0(s) · x̃− K/2
x̃ + ỹ

− ϵ̃2x
x̃3 = 0

ỹ ′′ + k2
y ,0(s) · ỹ − K/2

x̃ + ỹ
−
ϵ̃2y
ỹ3 = 0

The 2D envelope equation has 3 contributors to the dynamics:
■ k2

x ,0(s) · x̃ : the external force contributor.
■ − K /2

x̃+ỹ : the space-charge contributor.
■ The effect is defocusing (negative sign).
■ The effect is proportional to the generalized perveance K = q·I

2πϵ0m(γβc)3 : it is thus decreasing
with energy.

■ The effect decreases with the beam size: the slope of the electric field at the core depends on
the beam size.

■ − ϵ̃2
x

x̃3 : the emittance contribution. This term increases when the beam size is decreasing:
that is even the driver for very small beam sizes (even stronger than space charge).
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A few words about the envelope equation



ρ(x , y) =
{
ρ0 if x2

X 2 + y2

Y 2 + z2

Z 2 < 1
0 otherwise

ρ0 = Q
4
3π · X · Y · Z

We have: ũ = U/
√

5 u = x , y , z

Space-charge force

F ′SC,x = q
mc2 · 3

4πϵ0
· Q
β2γ3 · 1 − f

(X + Y )Z · x
X

F ′SC,y = q
mc2 · 3

4πϵ0
· Q
β2γ3 · 1 − f

(X + Y )Z · y
Y

F ′SC,z = q
mc2 · 3

4πϵ0
· Q
β2γ3 · f

XY
· z

Z

f = f
(

X
Y , γZ√

XY

)
is a form factor

of the ellipsoid.

3-D space charge parameter
K3 = q

53/2mc2 · 3
4πϵ0

· Q
β2γ3

Antoine Chancé NPAC-2023 31 October 2023 37 / 74

Bunched uniform beam



Beam 3D envelope equations

X ′′ + k2
x ,0(s) · X − K3(1 − f )53/2

(X + Y )Z −
ϵ2x ,eff
X 3 = 0

Y ′′ + k2
y ,0(s) · Y − K3(1 − f )53/2

(X + Y )Z −
ϵ2y ,eff

Y 3 = 0

Z ′′ + k2
z,0(s) · Z − K3f53/2

XY
−
ϵ2z,eff
Z 3 = 0

ϵx ,eff = 5 · ϵ̃x the effective emittance of the
bunched beam.

Beam RMS 3D envelope equations

x̃ ′′ + k2
x ,0(s) · x̃ − K3(1 − f )

(x̃ + ỹ)z̃ − ϵ̃2x
x̃3 = 0

ỹ ′′ + k2
y ,0(s) · ỹ − K3(1 − f )

(x̃ + ỹ)z̃ −
ϵ̃2y
ỹ3 = 0

z̃ ′′ + k2
z,0(s) · z̃ − K3f

x̃ ỹ
− ϵ̃2z

z̃3 = 0

Valid whatever the ellipsoidal beam
distribution:
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Bunched beam envelope equations
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2.Linear(ized) motion
Space-charge tune depression



Replacing the periodic focusing force by a continuous force.
The particle motion without space-charge is:

d2x
ds2 = −

(σx ,0

L

)2
· x = −k2

x ,0 · x ; kx ,0 =
(σx ,0

L

)
Phase advance per meter.

⇒ x(s) = x0 · cos (kx ,0 · s + φ)

The particle motion with linearised space-charge is:

d2x
ds2 = −

(
k2

x ,0 − K̃SC,x

)
· x = −k̃2

x · x

k̃x =
√

k2
x ,0 − K̃SC,x = η̃ · kx ,0 RMS Phase advance par meter with linear space-charge

η = k̃x
kx ,0

Space-charge tune depression
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Space-charge tune depression



Continuous focusing channel Periodic focusing channel

No space-charge:

xnsc(s) = x0 · cos (kx ,0 · s + φ) xnsc(s) =
√
β0 · U · cos (kx ,0 · s + φ)

Linear space-charge:

xsc(s) = x0 · cos (η̃ · kx ,0 · s + φ) xsc(s) =
√
βsc · U · cos (η̃ · kx ,0 · s + φ)
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Space-charge tune depression (2)
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3.Non-linear effects
Tune dispersion



Motion equation in a linear continuous external force

dx ′

ds
= −k2

x ,0 · x + F ′x ,SC (r, s)

The space-charge force can be decomposed:

F ′x ,SC (r, s) =
∑
i>0

kx ,SC,i · x i

We obtain then:

dx ′

ds
= −

(
k2

x ,0 − kx ,SC,1
)

· x︸ ︷︷ ︸
Linear force

−
∑
i>1

kx ,SC,i · x i

︸ ︷︷ ︸
Non-linear part
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Non-linear motion equation



■ At small oscillation amplitude:

dx ′

ds
= −

(
k2

x ,0 − kx ,SC,1
)

· x = − (ηx ,c · kx ,0)2 · x

ηx ,c : Core space-charge depression.
■ At very large amplitudes:

The particle is often far from the beam it feels essentially the external force. Its oscillation
frequency kx tends to kx ,0.

■ At intermediate amplitude, the particle oscillation frequency depends on its amplitude: this
is the space-charge tune dispersion.

ηx ,c · kx ,0 ≤ kx < kx ,0
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Tune dispersion



Particle trajectories around a uniform beam for various amplitudes.

Question
What is the space-charge tune depression here?
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Tune depression: example
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3.Non-linear effects
Matching



The particle motion can be described with an Hamiltonian H:
dr
dt

= ∂H
∂p = ∇p · H

dp
dt

= −∂H
∂r = −∇r · H

Particles have phase-space trajectories on which the Hamiltonian is constant (orthogonal to the

Hamiltonian gradient)
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Motion Hamiltonian



Perfect matching: The beam distribution is stationary
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Perfect matching



f (r, p, t) · dr · dp
is the number of particle at time t in a small phase-space hyper volume dr · dp at position (r, p).

Vlasov equation
∂f
∂t + p

m · ∇rf + q
(
E + p

m × B
)

· ∇pf = 0
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Distribution function



∂f
∂t

= 0 ⇒ f (r, p) · dr · dp = g (H (r, p)) · dr · dp

But the Hamiltonian depends on the electrostatic potential ϕ and thus on the beam distribution
(∆ϕ = −ρ/ϵ0). With:

ρ(r) =
∫

f (r, p) dp

The perfectly matched distribution is then solution of the implicit equation:

f (r, p) = g (H (r, p, f (r, p)))
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Perfect matching



■ Cylindrical continuous beam.
■ Radial dynamics only.
■ Continuous radial linear focusing channel.

dr
ds

= r ′ =
∂H (r , r ′, s)

∂r ′

dr ′

ds
= −k2

0 · r + F ′
SC(r , s) = −

∂H(r , r ′, s)
∂r

H(r , r ′, s) =
1
2

· r ′2 +
1
2

· k2
0 · r2 + VSC(r , s)

VSC(r , s) ≡
qϕ(r)

β2γ3mc2

ρ(r) =
a′(r)∫
0

∫ 2π

0
f (H(r , r ′))r ′dr ′dψ = 2π

1
2 a′(r)2∫

0

f (H(r , r ′))d
(

1
2 r ′2

)

H(r , r ′) = 1
2 r ′2 + W (r) W (r) ≡ 1

2k2
0 · r2 + VSC(r , s)

1
2 r ′2 = H(r , r ′) − W (r) 1

2a′(r)2 = W (a) − W (r)
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Case study



ρ(r) = 2π
W (a)∫

W (r)

f (H)dH

∀r < a; ∆ϕ = 1
r

d
dr

(
r

dϕ(r)
dr

)
= −2π

ϵ0

W (a)∫
W (r)

f (H)dH

Whatever f (H):
■ If emittance dominated (ηc ≈ 1; VSC ≪ k2

0 r2) ("hot" beam),
■ the radial profile depends on f ,
■ the particle phase-space trajectories are ellipses.

■ If space-charge dominated (ηc ≈ 0; W (r) ≈ 0 for r < a) ("cold" beam),
■ the radial profile tends to uniform,
■ the particle phase-space trajectories tends to rectangular.
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Case study (2)



Water-bag beam: f (H) =
{

1
H0

if H ≤ H0

0 if H > H0

Radial density Phase-space trajectories or distribution
contour-plot

(1): No space-charge (2)–(4): growing space-charge
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Case study – illustration
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3.Non-linear effects
Mismatching



The space-charge force is before all non-linear.
A mismatched beam goes filament, and particles are filling gradually the swept phase-space
volume.
With associated RMS emittance growth.
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Mismatch - filamentation



Hypothesis: Cylindrical uniform beam.

Envelope equation: x̃ ′′ + k2
x ,0(s) · x̃ − K

4x̃
− ϵ̃2x

x̃3 = 0

Mismatched beam: x̃ = x̃a (1 + δ)

δ′′ +
(

k2
x ,0(s) + K

4 · x̃2
a

+ 3 ϵ̃
2
x

x̃4
a

)
· δ = 0

δ(s) = M · cos (kd ,r s + φ)

Mismatch mode frequency

kd ,r =
√

k2
x ,0(s) + K

4·x̃2
a

+ 3 ϵ̃2
x

x̃4
a

= kx ,0
√

2 · (1 + η̃2
x )
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Mismatch – 1D mode



A continuous beam in a quadrupolar channel:
⇒ 2 coupled envelope equations: 2 modes

A bunched beam in a quadrupolar channel and cavities:
⇒ 3 coupled envelope equations: 3 modes
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Mismatch – 2D-3D mode



Due to the tune dispersion, there is always a particle amplitude of which the oscillation
frequency is half the mismatch mode frequency.

η̃2
x · k2

x <

(
kd ,r

2

)2
= k2

x ,0 · 1 + η̃2
x

2 < k2
x ,0
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Second order mismatch-mode parametric resonance



Uniform distribution; Beam mismatch: 10%; η = 0.85
Particles with an oscillation frequency near half this of a mismatch mode.

Red: particle phase-space trajectory
Blue: stroboscopic viewing at mismatch mode frequency
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Second order resonance viewing



Particles with different initial amplitudes (viewing at mismatch frequency):

■ No perturbation if large (magenta) or small (cyan) initial amplitudes.
■ Stability islands (yellow) for particles at the half mismatch frequency.
■ Oscillation around stability island for particles in the black region.
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Second order resonance viewing (2)
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4.Wall effects
Incoherent and incoherent motion



Incoherent motion
The beam consists of many particles, each of which moves inside the beam with its individual
betatron amplitude, phase, and even tune Q (under the influence of direct space charge).
Amplitude and phase are randomly distributed. The beam and its centre of gravity – and thus
the source of the direct space-charge field – do not move (static beam).

Coherent motion
A static beam is given a transverse fast deflection (< 1 turn) and starts to perform betatron
oscillations as a whole. This is readily observed by a position monitor. Note that the source of
the direct space charge is now moving: individual particles still continue their incoherent motion
around the common coherent trajectory and still experience their incoherent tune shifts as well.
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Coherent and incoherent motion
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4.Wall effects
Example of an incoherent motion: Plate conductor



The real charge q attracts charges in the plate conductor (at a distance d). This charge
distribution sets a constant potential in the conductor. It can be modelled by an image charge
−q symmetric of the real charge with respect to the plate.
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Image charge: plate conductor



Let us consider a charge q and a perfectly conductor plate at the distance d . We will use a
frame centred on the plate (the position of the charge is thus (d , 0, 0). Potential generated by
the charge:

ϕq = q
4πϵ0

1
∥r∥

= q
4πϵ0

1
((x − d)2 + y2 + z2)1/2

Let be ϕw the potential generated by the wall. The total voltage ϕT = ϕq + ϕw on the electric
plate is at the ground voltage V = 0. We get:

ϕq(x = 0) + ϕw (x = 0) = 0

ϕw (x = 0) = − q
4πϵ0

1
(d2 + y2 + z2)1/2 = −q

4πϵ0
1

((0 − (−d))2 + y2 + z2)1/2

Image charge
ϕw is equivalent to the potential generated by a charge −q at the position x = −d .
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Demonstration of the image charge (plate conductor)



We consider that the beam pipe is rectangular with a vertical height 2h small compared to the
width 2w : h ≪ w .
We assume a linear distribution. The electric field generated by a linear distribution λ is:

∞∑
n=1

(−1)n

n2 = −
π2

12

Eλ(r) = λ

2πϵ0
xex + yey

x2 + y2

The sum of the image charges is then (y ≪ h):

E(x , y) =
∞∑

n=1

(−1)nλ

2πϵ0

[
xex + (2nh − y)ey

x2 + (2nh − y)2 +
xex − (2nh + y)ey

x2 + (2nh + y)2

]

≈ λ

πϵ0

∞∑
n=1

(−1)n
[

xex − yey

4n2h2 + o(x , y)
]

≈ I
βcπϵ0

π2

48h2 (−xex + yey + o(x , y))
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Electric field if beam between two plates



Example for a uniform elliptical continuous beam:
dx ′

ds
= −k2

x ,0 · x + F ′x ,SC(r, s) = −k2
x ,0 · x + Fx ,SC(r, s)

γβ2m0c2

dy ′

ds
= −k2

y ,0 · y + F ′y ,SC(r, s) = −k2
y ,0 · y +

Fy ,SC(r, s)
γβ2m0c2

dx ′

ds
+

[
k2

x ,0 − q
πϵ0m0c3

I
β3γ

(
1

γ2X · (X + Y ) − π2

48h2

)]
· x = 0

dy ′

ds
+

[
k2

y ,0 − q
πϵ0m0c3

I
β3γ

(
1

γ2Y · (X + Y ) + π2

48h2

)]
· y = 0

kx ,inc = ηxkx ,0 = kx ,0

[
1 − q

πϵ0m0c3
I

β3γk2
x ,0

(
1

γ2X · (X + Y ) − π2

48h2

)]1/2

ky ,inc = ηy ky ,0 = ky ,0

[
1 − q

πϵ0m0c3
I

β3γk2
y ,0

(
1

γ2Y · (X + Y ) + π2

48h2

)]1/2
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Tune shift if beam between two plates



■ The electric image field is vertically defocusing, but horizontally focusing (sign of image
term changes), which by the way is not just a feature of this particular geometry, but is
typical for most synchrotrons with their rather flattish vacuum pipes;

■ The field is larger for small chamber height h;
■ Image effects decrease with 1/γ, much slower than the direct space-charge term (1/γ3),

and thus are of some concern for electron and high-energy proton machines.
■ The incoherent motion can be measured by using a quadrupole lens and by introducing a

mismatching. The envelope oscillation period gives the incoherent tune by dividing by 2.
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Wall effects against direct space-charge
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4.Wall effects
Example of a coherent motion: Circular conductor



The charge distribution on a cylindrical conductor of radius R by a charge per linear meter λ at
a distance a from the cylinder center can be modelled by a charge per linear meter −λ on the
charge-cylinder center axis at distance b such as:

a · b = R2
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Image charge: cylindrical conductor



Let us consider a perfectly conductor cylinder of radius R and a linear charge λ at the position
x = a. The frame center is the center of the cylinder. Electric field generated by the linear
charge:

Eq = λ

4πϵ0

∫ ∞
−∞

dzr
∥r∥3 = λ

2πϵ0
r − ax⃗

x2 + y2 + a2 − 2ax

Let be Ew the potential generated by the cylinder. The total electric field ET on the cylinder is
normal to the surface. We get:

Eq,θ(r = R) + Ew ,θ(r = R) = 0

Ew ,θ(r = R) = − λ

2πϵ0
a sin θ

R2 + a2 − 2aR cos θ = −λ
2πϵ0

R2/a sin θ(( R2

a

)2 + R2 − 2 R2

a R cos θ
)

Image charge
The field is equivalent to the one generated by a linear charge −λ at the position x = R2/a.
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Demonstration of the image charge (cylindrical conductor)



Let us consider a linear distribution with an offset of r0 = x0ex + y0ey . The equivalent charge
image of the beam pipe is a linear distribution −λ at the position r1 = R2

r2
0

r0. The electric field
at the beam center is then:

Eλ(r0) = λ

2πϵ0
r1 − r0

∥r1 − r0∥2 = λ

2πϵ0
r0

R2 − r2
0

= λ

2πϵ0
r0

R2 + o(x0, y0)


dx ′0
ds

= −k2
x ,0 · x0 + Fx ,SC(r, s)

γβ2m0c2 =
[
−k2

x ,0 + q
πϵ0m0c3

I
β3γ

1
2R2

]
· x0

dy ′0
ds

= −k2
y ,0 · y0 +

Fy ,SC(r, s)
γβ2m0c2 =

[
−k2

y ,0 + q
πϵ0m0c3

I
β3γ

1
2R2

]
· y0

kx ,coh = ηxkx ,0 = kx ,0

[
1 − q

πϵ0m0c3
I

β3γk2
x ,0

1
2R2

]1/2

ky ,coh = ηy ky ,0 = ky ,0

[
1 − q

πϵ0m0c3
I

β3γk2
y ,0

1
2R2

]1/2
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Beam dynamics if offset in a circular pipe



■ The force is linear in r̄, so there is a coherent tune shift.
■ The 1/γ dependence of the tune shift comes from the fact that the charged particles induce

the electrostatic field and thus generate a force proportional to their number, but
independent of their mass, whereas the deflection of the beam by this force is inversely
proportional to their mass m0γ.

■ The coherent tune shift is never positive.
■ Note that a perfectly conducting beam pipe has been assumed here, for simplicity. The

effects of a thin vacuum chamber with finite conductivity are more subtle.
■ The coherent tune shift can be measured by deflecting the beam with a transverse kicker

(with a gate shorter than one revolution period) and by measuring the position (in a ring,
turn after turn or in a linac at different positions) with a beam position monitor.
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A few features of the coherent tune shift



■ Space charge force comes from the charge and current beam distribution: it decreases with
energy. At high energy, wall effects (indirect space charge) are greater than direct space
charge.

■ Space-charge force is non-linear except for uniform distributions.
■ Two beams are equivalent if they carry the same current and has the same covariance

matrix.
■ The envelope equation gives the evolution of the RMS beam size and has 3 contributors:

external force, space-charge effect and emittance.
■ Space-charge forces increase the motion period: tune depression.
■ The non-linearity makes the tune depend on amplitude: tune dispersion.
■ To keep the beam distribution, the beam needs a perfect matching.
■ If the beam is not matched, beam-size is oscillating.
■ Some resonances can occur with stability islands.
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