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1 General coordinate transformations in Minkowski space

1. Start from Minkowski coordinates £* = (¢, z,y, ) with metric 7,,. On transforming to
general curvilinear coordinates z#, the metric tensor and Christoffel symbols are defined

by
o0&~ OB
gl“’(x) = naﬁ axu al_y (1)
ozt 0%¢
H = —
I () & Qv O @
Show that
1 K
FHVA = 59“ (azzgn)\ + a)\gm/ - 8ngz/>\>' (3)

What are the symmetries of I'*,, 7

2. Show that under a coordinate transformation z# — x'* (assumed invertible),
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Hence show that if the geodesic equation holds in one set of coordinates, it holds in
another.

3. Determine how the Christoffel symbols transform under a coordinate transformation
ot — .

2 Geodesic equation

1. Consider a time-like curve C'()), parametrised by a parameter A, on a space-time with
metric g,,,. What is the sign of gag (:c)%% on this curve ? Obtain the geodesic equation

by minimising the proper-time between two points pg = C'(\g) and p; = C'(\1) :

P1 PL T P1 \/ dre drB
= — dr = — —d\ = — dM /| —q, _— .
So[x] m/po T m/p0 o m/po Jap(x) TN (5)

(Here 7 is the proper-time.) In the last step choose A = T to express the geodesic equation
in terms of z* and i* = da*/dr.

2. Show that the same geodesic equation is obtained from the action
Silz] = /drﬁ[x“,i’“] (6)
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where
dat dx”

£ = gu(@) - 7)

Note : For massless particles, proper-time does not exist. The geodesic equation is
expressed in terms of a parameter A along the light-like geodesic, satisfying

dz® dz®
Jap() == = 0. (8)
The geodesic equation then reads
d?at dz? da?
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3. Consider a space-time metric of the form
ds* = —A(r)dt* + B(r)dr? + r*dQ? (10)

where d2? = df? + sin® §d¢?. This is the general form of a static spherically symmetric
metric, which we will use later in the course to describe the gravitational field of a
star. Write down the corresponding Lagrangian £. Show that t is a cyclic variable, and
determine its equation of motion. From this, show that

A/
Ik, =Tt = YL I, =0 otherwise. (11)

From the (7,0, ¢) equation determine the remaining Christoffel symbols. Verify you cal-
culations by determining the Christoffel symbols directly from the metric.

3 Rindler coordinates

Rindler coordinates (p, ) are defined in terms of Minkowski coordinates (¢, x) by
t = psinh x = pcosh (12)
1. Write down the metric in Rindler coordinates, and determine all the non-vanishing

Christoffel symbols.

2. Write down the p and ¢ components of the geodesic equation, together with the definition
of proper-time expressed in Rindler coordinates.

3. Show that a first integral of the -geodesic equation is pzv,b = K where K is a positive
integration constant. Now show that p satisfies

K2
pQ—FH:o (13)

4. The trajectories of the geodesics in space-time are of the form p(7). Eliminate 7 to find
an equation for dp/dvy. Verify that its solution is

p = = cosh(i ) (14)

where 1)y is an integration constant. Show that this corresponds to rectilinear motion of
the form = = o + vt where (¢,z) are Minkowski coordinates.
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5. Show that the proper-time for an observer is given by

- Jo ()

6. Consider two observers : O who is intertial and fixed at x = 2o > 0; and O" who
has constant acceleration (that is, in her instantaneous rest frame, the acceleration is
constant). Show that the trajectory of O’ is given by

p=po, T —t"=p] (16)
and determine her acceleration in terms of py. Draw the world-lines of O and O’ on the
space-time diagrams (¢, z) and then (¢, p). Indicate xy and py on each of your diagrams.

7. Use (15) to deterime the proper-time of O and O’ as a function of .

8. Now introduce a constant 1y such that zy = pg cosh ¢y. Calculate the proper-time which
has elapsed between the two instances at which the observers meet (namely 1 = £1)).
Show that ]

ATo  sinh )y -
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1 (17)
Which is larger ?
9. Show that the trajectories p(1) of light rays are given by
p = puetli=s) (18)

where 1, and p, are the coordinates of a point on the light-ray.

4 Extension of the Rindler metric

Here we consider the metric
ds* = —2*dt* + da?, —00 < t < 400, x> 0. (19)

Notice that, in this coordinate system, the metric is singular at x = 0.

1. Write down the equation giving trajectories t(x) of light-rays in this metric. Express
them in terms of the new coordinates

u=t—In(x) v=t+In(z)

2. Write the metric in this new coordinate system (u,v).

3. Now carry out a further change of variables
U=—-¢e", V=e"

Write down the metric in these variables. Same question for the change of variables

1 1
Identify this new metric. In what range are the coordinates 7" and X defined 7 What can
you say about the singularity at 2 = 0 in the metric (19)? Convince yourself that it is
just a “coordinate singularity”, namely due to an inadapted choice of coordinates, and

that the metric written in another set of coordinates is perfectly well defined.



5 From past exam : Basics

1. Show that the spacetime interval ds* = g,sdx®dz” is invariant under coordinate trans-
formations 2% — ¢ if g,s are components of a tensor transforming according to the
tensor transformation law

_ dxt dx”
GaB — Gap = @@guu-

2. Let V* be the contravariant components of a vector, and consider an invertible coordi-
nate transformation 2° — 7°. Write down the transformation law for V5V*, and deduce
that Christoffel symbols transform according to

N 01 OxP 0z°  O%x° 01
Vo = 15 = Vo g 038 03+ 03P 0
3. Consider a 2-sphere with coordinates (6, ¢) and line-element

ds* = df? + sin® 0d¢*.

Show that lines of constant longitude (¢ =constant) are geodesics, and that the only
line of constant latitude (6 =constant) that is a geodesic is the equator (0 = 7/2).

6 From Exam : Locally inertial coordinates

1. At a point () in some coordinate system x®, and as seen in lectures, it is always possible
to construct a locally inertial coordinate system £“. Which quantity should vanish at (o)
in this locally inertial coordinate system, and why 7

2. Suppose that the point (o) and in the coordinate system x®, the Christoffel symbol has

the value F?o) v Then at x?o), the £ are constructed as follows :
1

£%(x) = 2% — T+ 5 (x“ — xé‘o)) (x” — x’(’o)) L0y (20)

The point (o) in the new coordinates is the origin £* = 0. Prove explicitly that, when
transformed to the new coordinates, the relevant quantity that should vanish at £* = 0
indeed does so.

[Hint : for simplicity, choose the origin of your z* coordinates such that Tlo) = 0.]

3. In the locally inertial coordinate system £, show that 9,(gs,£%67) = 2gasE”.

7 From past exam : Coordinate transformations

Consider the line element
ds? = —dt* + t*[dx® + sinh? x(df? + sin® 0d¢?)],  t > 0.
Carry out the change of coordinates
t = tcoshy, 7 = tsinh y, 6 =0, b= o. (21)

Identify the new metric, specifying carefully the allowed ranges of the coordinates ¢ and 7.
What do geodesics look like in this new metric (note : essentially no calculation is required to
answer this question)? Conclude that in the original (¢, x, 0, ¢) coordinate system, geodesics
are given by t = d/(sinh y — v cosh x) where v is a constant that can be interpreted as a speed,
and d is another constant that can be interpreted as an initial position.
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