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1 Useful identities to prove

Prove the following useful relations :

∇γgαβ = 0 ,

gαµ∂γg
µβ = −gµβ∂γgαµ ,

∂γg
αβ = −Γα

µγg
µβ − Γβ

µγg
µα .

Other very useful relations are given (and proved) in the boxed equations in the next exercise.

2 Tensor densities

Recall that under a change of coordinates xµ → x′µ(xα), scalars are invariant : that is for a
scalar A, the transformation law is A → A′ = A. Vectors transform as

V α → V ′α =
∂x′α

∂xβ
V β

and tensors as

Tαγ → T ′αγ =
∂x′α

∂xβ

∂x′γ

∂xδ
T βδ

• Scalar densities, on the other hand, are defined to transform as

A → A′ =

∣∣∣∣ ∂x∂x′

∣∣∣∣A (1)

where ∣∣∣∣ ∂x∂x′

∣∣∣∣ = det(Jα
β) where Jα

β =
∂xα

∂x′β .

That is, Jαβ is the Jacobian (matrix) associated with the coordinate transformation.
• Vector densities are defined to transform as

Vα → V ′α =
∂x′α

∂xβ
Vβ

∣∣∣∣ ∂x∂x′

∣∣∣∣ ,
and similarly for tensor densities. The aim of this exercise is to get some familiarity with these
densities, as the action for GR is written in terms of these (and you will understand why below).

1. Let Mαβ any 2nd-rank covariant tensor. From its transformation law, deduce that

(detMαβ)
1/2

is a scalar density.
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2. Taking Mαβ to be the metric, and on denoting

g ≡ detgαβ

with g < 0, deduce that
√
−g is a scalar density. Hence conclude that if A is a scalar,

then A =
√
−gA is a scalar density.

3. When seeking an action S =
∫
d4xL for Einstein’s equations, S must be a scalar (why ?).

Deduce, on using the definition (1), that L must be a scalar density (known as the
Lagrangian density).

Thus we can write L =
√
−gΦ where Φ is a scalar, so that S =

∫
d4x

√
−gΦ. Show

that d4x
√

−g(x) is an invariant measure (known as the space-time volume element).

4. Definitions : Let A, Cµ and Bµ be respectively a scalar, a contravariant vector and a
covariant vector. Then the corresponding densities are defined by

A =
√
−gA scalar density

Cµ =
√
−gCµ contravariant vector density

Bµ =
√
−gBµ covariant vector density

The aim of the next questions is to learn how to take covariant derivatives of different
(scalar/vector/tensor) densities.

5. Derivatives of
√
−g. Using the identity detM = etr lnM where M is a matrix, show that

δg = ggαβδgαβ (2)

Hence deduce that

δ
√
−g =

1

2

√
−ggαβδgαβ = −1

2

√
−ggαβδg

αβ (3)

6. Show, using (3) that

∂µ(
√
−g) =

√
−gΓα

µα

and that √
−ggµνΓα

µν = −∂β(
√
−ggαβ)

Both these are extremely useful relations.

7. Show that
∇αA = ∂αA− Γβ

αβA

8. Now consider a vector density Vα. Show that

∇αVβ = ∂αVβ + Γβ
αγVγ − Γγ

αγVβ

9. Hence show that
∇αVα = ∂αVα (4)

Deduce that for a vector

∇αV
α =

1√
−g

∂α(
√
−gV α)

This is again an extremely useful identity.
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3 Parallel transport

On a curve xα(λ) with tangent vectors tα = dxα/dλ, a vector vµ is said to be ‘parallel
transported’ if it satisfies

tα∇αv
µ = 0 (5)

More generally, parallel transport of a tensor T µ1...µn
ν1...νp is defined by

tα∇αT
µ1...µn

ν1...νp = 0

1. Show that (5) is equivalent to

Dvσ

dλ
≡ dvσ

dλ
+ Γσ

µν

dxµ

dλ
vν = 0 (6)

Is it true to say that a geodesic is a curve along which its tangent vector is parallel
transported ?

2. What does (6) reduce to in Minkowski space ? Comment.

In the following we consider 2 different metrics in 2D-space :

ds2 = dr2 + r2dθ2 2D euclidean plane in polar coordinates

ds2 = dθ2 + sin2 θdϕ2 2D surface of a sphere

3. In the euclidean plane, consider a circle of radius 5 centered on the origin and described
by the parameter λ = θ. Now consider the parallel transport of a vector around this
circle, starting at the point (r, θ) = (5, 0) where the vector is taken to have components
(vr, vθ) = (1, 0) ; and finishing at the point (r, θ) = (5, 2π). By an explicit calculation
show that the vector (vr, vθ) at the final point is unchanged.

4. On the surface of the sphere, consider a circle parametrised by

θ = θ0, ϕ = ϕ0 + λ

Write down the tangent to the curve, and show that equation (6) takes the form

dvθ

dλ
− vϕ sin θ0 cos θ0 = 0,

dvϕ

dλ
+ vθcotanθ0 = 0

Combine these into one second order equation for vθ, which you can then integrate.
Taking as initial conditions (vθ, vϕ) = (1, 0) show that the solution is

vθ(λ) = cos[λ cos(θ0)] , vϕ(λ) = − sin[λ cos(θ0)]/ sin θ0

When the final point ϕ1 is given by ϕ1 = ϕ0 + 2π, the initial and final points coincide.
Deduce (vθ(2π), vϕ(2π)) and show that this is not equal to (1,0) – unless one is on the
equator, θ = π/2.

4 Geodesic deviation equation : a covariant derivation

Consider a continuous sequence of time-like geodesics parametrised by propertime τ . Each
geodesic is labelled by a parameter µ. This is sometimes called a congruence of timelike geode-
sics, and the entire congruence can be described by the parametric equations

xα = rα(τ, µ).
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Figure 1 – Congruence of timelike geodesics

When µ is fixed and τ varies one goes along a selected geodesic in the congruence, and the
geodesics tangent vector is

uα = ∂rα/∂τ.

When τ is fixed and µ varied, the displacement is across geodesics.
The vector

ξα := ∂rα/∂µ

is called that deviation vector that points from geodesic to geodesic, see figure. The aim is to
derive an evolution equation for this deviation vector.

1. Convince yourself that the geodesic equation can be expressed as uβ∇βu
α = 0.

2. Show that the definitions of uα and ξα imply that

ξβ∂βu
α − uβ∂βξ

α = 0

and that the equation can be re-expressed in the covariant form

ξβ∇βu
α − uβ∇βξ

α = 0.

3. Using the definition of the Riemann tensor in terms of the commution of 2 covariant
derivatives, show that one can write

ξγuδ(∇γ∇δu
α −∇δ∇γu

α) = Rα
βγδu

βξγuδ

4. Now rewrite the first 2 terms on the LHS (using the geodesic equation). You should
arrive at an expression of the form

−Rα
βγδu

βξγuδ = uδ∇δ(u
γ∇γξ

α)− [uδ∇δξ
γ − ξδ∇δu

γ](∇γu
α)

Convince yourself that the 2nd term, the one in square brackets, vanishes.

5. Finally show that you can rewrite this equation in the form

D2ξα

Dτ 2
= −Rα

βγδu
βξγuδ (7)

which is the equation of geodesic deviation. Notice that there is a relative acceleration
between geodesics whenever the space-time is curved, that is whenever the Riemann
curvature is non-zero.
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5 Bianchi Identity

We wish to prove the Bianchi identity of the Riemann curvature tensor :

∇[aRbc]d
e = 0 (8)

where for any tensor Tijk, the totally antisymmetric tensor T[ijk] is defined by

T[ijk] =
1

3!
(Tijk − Tjik + Tjki − Tkji + Tkij − Tikj) (9)

Let Vb be a general co-vector.

1. Recall how (∇b∇c − ∇c∇b)Vd is expressed in terms of the Riemann tensor. Deduce
∇a(∇b∇c −∇c∇b)Vd in terms of the Riemann tensor, the co-vector, and their covariant
derivatives.

2. Explain why
(∇a∇b −∇b∇a)(∇cVd) = Rabc

e∇eVd +Rabd
f∇cVf (10)

Hint : use the fact that ∇cVd is a tensor.

3. After antisymmetrizing over a, b and c the equations obtained in 1. and 2. , infer that

R[abc]
e∇eVd +R[ab|d|

f∇c]Vf = Ve∇[aRbc]d
e +R[bc|d|

e∇a]Ve (11)

where the vertical bars indicate that we do not anti-symmetrize over d. Deduce that

Ve∇[aRbc]d
e = 0 (12)

from which we arrive at (8) since Ve is a general co-vector.

6 Einstein Hilbert action

In the absence of matter, T µν = 0, the Einstein equations are Gµν = 0. As discussed in
exercise 2, an action yielding this equation should be of the form

S ∝
∫

d4x
√
−g × (scalar depending on gµν) (13)

Possible scalars are constants, R (Ricci scalar) ; R2 ; RµνR
µν , RαβµνR

αβµν etc. However, Ein-
stein’s equations are second order in derivatives of g. It is a somewhat subtle point that requires
some thought — beyond the scope of this particular exercise (though you are welcome to think
about it !, and if there is time we may mention it in the context of modified gravity) — but
this means that the scalar in question can only contain R. In fact, the appropriate choice is
summed up in the Einstein-Hilbert action

SEH =
1

16πG

∫
d4x

√
−gR

From now on, for simplicity, we work in units in which 16πG = 1.
In this exercise is to vary this action with respect to the metric, and show that it gives the

Einstein equation Gµν = 0.
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1. Show that

δSEH =

∫
d4x

[
δ(
√
−ggµν)Rµν +

√
−ggµνδRµν

]
(14)

2. Using (3), show that
δ(
√
−ggµν)Rµν =

√
−g(δgαβ)Gαβ (15)

If the contribution from the second term in (14) vanishes, then deduce that one arrives
at the required Einstein equation.

3. Extra : The second term in (14) is more involved. It will be useful to work with the Rie-
mann tensor, and hence with the definition Rµν = Rα

µαν . In locally inertial coordinates,
show that

δRα
µαν = ∂β(δΓ

α
µν)− ∂ν(δΓ

α
µβ) (locally inertial coordinates) (16)

Now, while Γ is not a tensor, show that δΓ is a tensor. Deduce therefore that in any
coordinates

δRα
µαν = ∇β(δΓ

α
µν)−∇ν(δΓ

α
µβ)

This identity is known as the Palatini identity. Deduce that

√
−ggµνδRµν = ∇αUα

where the vector density Uα is given by

Uα =
√
−g(gµνδΓα

µν − gµαδΓβ
µβ) (17)

Using (4), show therefore that

δSEH =

∫
d4x

[√
−g(δgαβ)Gαβ + ∂αUα

]
Finally, using the divergence theorem, the last term can be written as an integral over
the boundary of the space-time manifold, namely

∫
d3xnαUα where nα is a normal to

the boundary. Assuming that the variations of the metric vanish on the boundary, or on
considering a space-time with no boundary, this last term will give zero. Hence we arrive

δSEH

δgαβ
=

√
−gGαβ (18)

and thus minimising the action gives the Einstein equation.

7 Einstein equation with matter

When matter is present, the action giving the Einstein equations is

S = SEH + Smatter (19)

1. On defining

Tµν = − 2√
−g

(
δSmatter

δgµν

)
(20)

show, using the results of the previous exercise, that variation of the action S yields
Gµν = 8πGTµν .
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2. Now we consider matter consisting of a free massive scalar field, ϕ described by the Klein-
Gordon action which you have seen in your Quantum Field theory course (however, note
are sign differences because our metric has the opposite sign to that of QFT !) :

Sscalar
matter =

1

2

∫
d4x

√
−g

(
−gµν(∂µϕ)(∂νϕ)−m2ϕ2

)
(21)

Show that in this case

Tµν = (∂µϕ)(∂νϕ)−
1

2
gµν(g

αβ(∂αϕ)(∂βϕ) +m2ϕ2) (22)

Is this Tµν symmetric ? Show explicitly that it is conserved using the equation of motion
for ϕ. Deduce the energy density ρ and pressure P of this massive free scalar field. How
do these expressions fpr ρ and P simplify when the scalar field depends only on time,
namely ϕ = ϕ(t) ? (This is a situation we will meet in the future) ?

3. When matter consists of a cosmological constant,

SCC
matter =

1

8πG

∫
d4x

√
−gΛ (23)

Calculate Tµν . Why must Λ be a constant ?
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