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1 Stress-energy tensor

1. Show that the covariant conservation of the stress-energy tensor, ∇µT
µν = 0 can be

rewritten in the equivalent form

∇µT
µν =

1√
−g

∂µ(
√
−gT µν) + Γν

σµT
µσ (1)

2. Consider a perfect fluid consisting of dust, so P = 0, and hence T µν = ρuµuν . Starting
from ∇µT

µν = 0 (and contracting with uν), deduce that ∇µ(ρu
µ) = 0. Also deduce that

the conservation of stress-energy implies that uµ must satisfy the geodesic equation.

3. Now consider the conservation equation in Minkowski space, where it reduces to ∂µT
µν =

0, with T µν = (ρ+P/c2)uµuµ+Pηµν (now inserting factors of c). We want to show that,
in the Newtonian limit, the conservation equation reduces to the well known equations
of motion and continuity equation.

(a) Show that uν∂µT
µν = 0 leads to the relativistic continuity equation

∂µ(ρu
µ) + (P/c2)∂µu

µ = 0 (2)

(b) Show that the following equation of motion is also satisfied :

(ρ+ P/c2)(∂µu
ν)uµ = −(ηµν+uµuν/c2)∂µP (3)

(c) Now take the non-relativistic limit u/c ≪ 1, and assume “weak” pressure namely
P/c2 ≪ ρ. Show that uµ ≃ (c, u⃗) (assuming γu ≃ 1), and that the continuity equation
reduces to ∂µ(ρu

µ) ≃ 0. Show also that the equation of motion reduces to the usual
Euler equation for a parfect fluid, namely

ρ

(
∂

∂t
+ u⃗ · ∇⃗

)
u⃗ ≃ −∇⃗P (4)

2 Solutions of Einsteins equations

1. Compute explicitly the non-vanishing Christoffel symbols and components of the Ricci
tensor for the Schwarzschild metric

ds2 = −
(
1− 2GM

r

)
dt2 +

(
1− 2GM

r

)−1

dr2 + r2dΩ2
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2. Identify the change of coordinates t̄ = t̄(t, r), r̄ = r̄(t, r) which transforms the de Sitter
metric :

ds2 = −dt2 + e2Ht(dr2 + r2dΩ2),

with H=constant, into the following form

ds2 = −
(
1− r̄2

R2
H

)
dt̄2 +

(
1− r̄2

R2
H

)−1

dr̄2 + r̄2dΩ2

where RH = H−1. The first metric is known as the flat form of the de Sitter metric, and
the second one as the static form of the de Sitter metric.

[Hint : eHt = eHt̄
√
1−H2r̄2 and reHt = r̄.]

3 [Exam 2018] Conformally flat metrics

In two dimensions (time together with one spatial direction), a general line-element can be
written locally as

ds2 = Ω2(t, x)(−dt2 + dx2)

where Ω(t, x) is an arbitrary non-vanishing function of t and x. The factor Ω(t, x) which mul-
tiplies the Minkowski metric, is known as the conformal factor, and the above metric is said to
be conformally flat.

i) Write down the Lagrangian from which one determines the equation of motion for time-
like geodesics. Together with the geodesic equation, use it to determine the Christoffel
symbols for this metric.

ii) Verify your calculations by determining the Christoffel symbols by direct calculation
from the metric.

iii) Using the symmetries of the Riemann tensor, determine the number N of independent
components of the Riemann tensor in 2 dimensions. Calculate these N components.

4 Schwarzchild metric in different coordinate systems

In some problems it is useful to use alternative, non-standard, coordinates for the Schwarz-
schild metric. Here are two examples.

1. Isotropic coordinates

Let X, Y, Z be new coordinates related to r, θ, ϕ (and hence x = r sin θ cosϕ, y =
r sin θ sinϕ, z = r cos θ) by

r = R
(
1 +

m

2R

)2

and
X = Rr−1x , Y = Rr−1y , Z = Rr−1z

In terms of these coordinates, show that the Schwarzschild metric becomes

ds2 = −
(
2R−m

2R +m

)2

dt2 +
(
1 +

m

2R

)4

(dX2 + dY 2 + dZ2)

Hence you can show that spaces with t=constant in the Schwarzschild metric are confor-
mal to Euclidean space.
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2. Regge-Wheeler/tortoise coordinates

In the region r > 2m, define the tortoise radial coordinate by

ρ = r + 2m log(r − 2m)

Write down the Schwarzschild metric in (t, ρ, θ, ϕ) coordinates. Show that it takes a form
in which the time-like sections θ =constant, ϕ =constant are conformal to 2-dimensional
Minkowski space.

5 Spherically symmetric metrics

Spherical symmetry implies that any line element can be written in the form

ds2 = −C(t, r)dt2 +D(t, r)dr2 + 2E(t, r)drdt+ F (t, r)r2dΩ2.

To write this in standard form, make the following change of coordinates :

1. Go from (t, r) to (t, r′) coordinates where r′2 = F (t, r)r2 (and invertiblity is assumed)

2. Now label r′ as r again. Show that the cross term can be removed by setting dt′ =
η(t, r)[C(t, r)dt− E(t, r)dr]

3. Finally, show that the resulting metric takes the form (on labelling t′ as t again)

ds2 = −B(t, r)dt2 + A(t, r)dr2 + r2dΩ2

and find the link between A, B and the other variables. This is the most useful form in
which to write a general spherically symmetric metric.

6 Shapiro Effect [From D.Langlois book]

The aim is to calculate the time taken by a light-ray (or radar signal) to go from the earth
(E) to a planet (P) and back again.

1. Consider a light signal propagating in the Schwarschild metric. Denote by r0 the mini-
mum radius of the trajectory of the light ray. Determine dt/dr as a function of r as well
as the constants M , r0, and the conserved angular momentum L and energy E.

2. Now expand the RHS of your expression in a perturbative expansion in powers of m/r
(i.e. assume m ≪ r). Use this to calculate the time taken to go from the earth to the
planet and back again, as a function of r0 ,rE and rP (where this last two are the radial
coordinates of the earth and the planet).

7 Kerr metric and Killing vectors [From D.Langlois book]

The Kerr metric is given by

ds2 = −
(
1− 2Mr

ρ2

)
dt2−4Mar sin2 θ

ρ2
dtdϕ+

ρ2

∆
dr2+ρ2dθ2+

(
r2 + a2 +

2Ma2r sin2 θ

ρ2

)
sin2 θdϕ2

(5)
where 0 ≤ a ≤ M and

∆ = r2 − 2Mr + a2

ρ2 = r2 + a2 cos2 θ
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1. What can you say about the a → 0 limit ?

2. Consider circular trajectories in the equatorial plane of the Kerr BH (θ = π/2).

(a) Show that the orbital period measured by an asymptotic observer is

T∞(r) =
2π

1− 2M
r

(√
∆− 2Ma

r

)
,

for a trajectory that is in corotation with the blackhole (ϕ̇ > 0). Also find the ortibal
period for a trajectory in anti-rotation.

(b) Now focus on the case of corotation. Show that the radial coordinate rmin correspon-
ding to the minimal period satisfies the equation

r(r − 2M)(r − 3M)− 2Ma2 + 2Ma
√
∆ = 0 (6)

3. Now consider lightlike geodesics in the plane θ = π/2.

(a) Identify the two Killing vectors of the metric (5).

(b) From them, determine the two conserved quantities.

(c) Deduce that the geodesics satisfy

ṙ2 = α2

[
1 +

a2 − b2

r2
+

2M(a− b)2

r3

]
where α and b need to be expressed in terms of the two constants of motion.

(d) For a circular geodesic, determine b as a function of the radius rcirc of the geodesic.
Show that rcirc is a solution of (6).

8 [Exam 2018] Another coordinate transformation

1. The space-time geometry around a static spherically symmetric object of mass M can
be described by a line-element of the form

ds2 = −F (r)dt2 +H(r)(dr2 + r2dθ2 + r2 sin2 θdϕ2). (7)

(Notice that the function H(r) also multiplies the part in r2dΩ2.) In the limit of a weak
gravitational field, an approximate expression for the functions F andH is the following :

F (r) = 1− 2
GM

r
+ 2β

(
2GM

r

)2

+ . . . (8)

H(r) = 1 + 2γ
GM

r
+ . . . , (9)

where β and γ are parameters (constants) called ‘post-newtonian parameters’.
i) Explain in a few words the origin of the first non-trivial term in F (r). Will these

approximate expressions for F and H be a good description for the metric around a
neutron star ? And for the sun ?

ii) Using a known static spherically symmetric metric of your choice, and after carrying
out the necessary coordinate transformations, determine the values of β and γ in
General Relativity.

[In modified gravity theories, different values of β and γ are allowed.]
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9 [Exam 2018] Geodesics in modified gravity

For this exercise, we work with the metric (7) where the functions F (r) and G(r) are given in
(8) and (9) respectively.

1. Consider two observers at fixed positions : the first is at r = r1, and the second is at
r = r2 > r1. The first observer sends two successive light signals to the second observer.
The proper time interval between the two light signals is δτ1 for the first observer, and
δτ2 for the second observer.
— The first light signal is emitted at coordinate time t1 and arrives at r2 are coordinate

time t2. The second light signal is emitted at coordinate time t1 + δt1 and arrives at
r2 are coordinate time t2 + δt2. Show that δt1 = δt2.

— The frequency ν of the electromagnetic signals is related to the proper time interval by
ν = 1/δτ . Show that the ratio ν2/ν1 (where ν2=received frequency, and ν1=emitted
frequency) is given by

√
F (r1)/F (r2). Would this frequency shift be visible on earth

(say with the two observers separated by a few hundred meters) ?

2. Identify all the Killing vectors of the metric (7). Write down the conserved quantities
along geodesics describing the dynamics of free particles, and give them a physical in-
terpretation.

3. Study light-like geodesics in the space-time (7), in the plane θ = π/2. Find the first
order equation for r(ϕ). In terms of the variable u = b/r, where the constant b should
be determined, show that this equation takes the form(

du

dϕ

)2

+ u2 =
H

F
. (10)

4. Working to first order in GM/r, write the explicit solution of (10) in terms of the post-
newtonian parameter γ. [The solution of (du/dϕ)2 + u2 = 1+ 2αu, for some constant α,
is u =

√
1 + α2 sin(ϕ− ϕ̄) + α.]

5. Hence deduce the angle ∆ϕ through which a light ray is deflected.
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