GENERAL RELATIVTY
 NPAC

TD 4

1 Linearised Einstein equations and GWs

Decompose the metric into the flat Minkowski metric, plus a small perturbation :

$$
g_{\mu \nu}=\eta_{\mu \nu}+h_{\mu \nu}
$$

with $\left|h_{\mu \nu}\right| \ll 1$.
We restrict ourselves to coordinates in which $\eta_{\mu \nu}$ takes its canonical form $\eta_{\mu \nu}=\operatorname{diag}(-1,+1,+1,+1)$. Write down the following quantities to linear order in the perturbation :

1. The inverse metric $g^{\mu \nu}$. If your expression contains $h^{\mu \nu}$, explain how this is obtained from $h_{\alpha \beta}$ (i.e. what metric do you use to raise the indices?)
2. The Christoffel symbol $\Gamma_{\mu \nu}^{\rho}$.
3. The Riemann tensor $R_{\mu \nu \rho \sigma}$.
4. The Ricci tensor $R_{\alpha \beta}$.
5. The Ricci scalar R.
6. The Einstein tensor $G_{\alpha \beta}$.
7. Does your Einstein tensor satisfy $\partial^{\mu} G_{\mu \nu}=0$? Why should it satisfy this?

Now consider a gauge/coordinate transformation

$$
\begin{equation*}
x^{\mu} \rightarrow x^{\prime \mu}=x^{\mu}-\xi^{\mu}\left(x^{\nu}\right) \tag{1}
\end{equation*}
$$

8. Determine how $h_{\alpha \beta}$ transforms under this transformation.
9. Same question for the Riemann tensor $R_{\mu \nu \rho \sigma}$

Action for the linearised Einstein equation :
10. Show that the Einstein tensor of part 6 can be obtained by varying the following Lagrangian \mathcal{L} with respect to $h_{\mu \nu}$:

$$
\begin{equation*}
\mathcal{L}=\frac{1}{2}\left[\left(\partial_{\mu} h^{\mu \nu}\right)\left(\partial_{\nu} h\right)-\left(\partial_{\mu} h^{\rho \sigma}\right)\left(\partial_{\rho} h_{\sigma}^{\mu}\right)+\frac{1}{2} \eta^{\mu \nu}\left(\partial_{\mu} h^{\rho \sigma}\right)\left(\partial_{\nu} h_{\rho \sigma}\right)-\frac{1}{2} \eta^{\mu \nu}\left(\partial_{\mu} h\right)\left(\partial_{\nu} h\right)\right], \tag{2}
\end{equation*}
$$

where $h=h^{\alpha}{ }_{\alpha}$.
11. (If you are feeling energetic :) This action can also be obtained from the Einstein Hilbert action, derived in TD2 (see the equation in a box under equation (13) in TD2), but where now R must be expanded to second order in the metric perturbation. Show that the second order expansion of the EH action is indeed identical to (2).
Trace-reversed perturbation
12. Write down the Einstein equations in terms of the trace-reversed perturbation defined in lectures :

$$
\begin{equation*}
\bar{h}_{\mu \nu} \equiv h_{\mu \nu}-\frac{1}{2} h \eta_{\mu \nu} \tag{3}
\end{equation*}
$$

13. Show that under the gauge transformation above, Eq. (1),

$$
\begin{equation*}
\bar{h}_{\mu \nu} \rightarrow \bar{h}_{\mu \nu}^{\prime}=\bar{h}_{\mu \nu}+\xi_{\mu, \nu}+\xi_{\nu, \mu}-\xi_{, \rho}^{\rho} \eta_{\mu \nu} \tag{4}
\end{equation*}
$$

14. Show that it is always possible to impose the Lorentz gauge, $\partial^{\mu} \bar{h}_{\mu \nu}=0$. Namely, show that if $\bar{h}_{\mu \nu}$ does not satisfy the Lorentz gauge, then one can find a gauge transformation $\bar{h}_{\mu \nu} \rightarrow \bar{h}_{\mu \nu}^{\prime}$ such that the corresponding $\bar{h}_{\mu \nu}^{\prime}$ does.
15. Show that in the absence of matter, the linearised Einstein equations become

$$
\begin{equation*}
\square \bar{h}_{\mu \nu}=0 \tag{5}
\end{equation*}
$$

These equations are very similar to Maxwells equations in empty space : the only difference is that the perturbations are associated with a metric tensor (2 indices). Convince yourself that equation (5) is nothing other than the wave equation. Show that a solution for a wave travelling in the z-direction, is $\bar{h}_{\mu \nu}=H_{\mu \nu} e^{i k_{\alpha} x^{\alpha}}$ where $H_{\mu \nu}$ is the polarisation tensor and $k^{\mu}=(\omega, 0,0, \omega)$ with $k^{2}=0$. What is the speed of propagation of the gravitational wave?

2 Electromagnetism and the TT gauge [from D.Langlois book]

The aim of this exercise is to understand the TT gauge, using electromagnetism as a helpful example.

1. The electromagnetic Lagrangian $L \propto \sqrt{-g} F_{\mu \nu} F^{\mu \nu}$ is invariant under the $U(1)$ gauge transformations $A_{\mu} \rightarrow A_{\mu}+\partial_{\mu} \chi$. Use this invariance to show that one can always choose the Lorentz gauge $\partial_{\mu} A^{\mu}=0$.
2. Write down Maxwells equations (in the vacuum) in the Lorentz gauge. Show that there exists a residual gauge freedom, and use it to fix $A_{0}=0$. (Note that the solution of the wave eqaution $\partial_{\mu} \partial^{\mu} f=0$ with initial conditions $f=0$ and $\partial_{t} f=0$ on a hypersurface of $t=$ constant, is $f=0$.)
3. Using the above, show that for gravitational waves propagating in empty space, one can impose the TT gauge.

3 Gravitational waves

Consider a non-relativistic system with one degree of freedom, namely a mass μ that performs harmonic oscillations along the z axis : $z_{0}(t)=A \cos \omega_{s} t$, with $A \omega_{s} \ll 1$ and $\omega_{s}>0$. (In practise the system could consist of 2 masses connected by a massless spring, and $z_{0}(t)$ is the relative coordinate of the centre-of-mass system.)
i) The mass density is given by $\rho(t, \vec{x})=\mu \delta(x) \delta(y) \delta\left(z-z_{0}(t)\right)$. Determine $\bar{h}_{i j}(t, \vec{x})$ at a distance $|\vec{x}|=R$ far from the source.
ii) Calculate $h_{i j}^{\mathrm{TT}}$ for a wave propagating in the direction $\vec{x}=R \vec{n}$ with $\vec{n}=(0, \sin \theta, \cos \theta)$. Comment on the θ-dependence of your result.

