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1 Linearised Einstein equations and GWs

Decompose the metric into the flat Minkowski metric, plus a small perturbation :

Guv = N + h;w

with |h,,| < 1.
We restrict ourselves to coordinates in which 7,,, takes its canonical form 7, = diag(—1,+1, +1, +1).
Write down the following quantities to linear order in the perturbation :

1. The inverse metric g"”. If your expression contains h**, explain how this is obtained from
heos (i.e. what metric do you use to raise the indices ?)

The Christoffel symbol I'7,.

The Riemann tensor 12, .-

The Ricci tensor R,ps.

The Ricci scalar R.

The Einstein tensor Gog.

7. Does your Einstein tensor satisfy 0G,, = 07 Why should it satisfy this?

A A ol S

Now consider a gauge/coordinate transformation
ot — 2t =t — H (V) (1)
8. Determine how h,g transforms under this transformation.
9. Same question for the Riemann tensor R, o

Action for the linearised Einstein equation :

10. Show that the Einstein tensor of part 6 can be obtained by varying the following Lagran-
gian £ with respect to hy, :

£= 5 (@) @uh) — @) @h" ) + S 01 Ouh) — S @)@ (2)

where h = h%,,.

11. (If you are feeling energetic :) This action can also be obtained from the Einstein Hilbert
action, derived in TD2 (see the equation in a box under equation (13) in TD2), but
where now R must be expanded to second order in the metric perturbation. Show that
the second order expansion of the EH action is indeed identical to (2).

Trace-reversed perturbation
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12.

13.

14.

15.

Write down the Einstein equations in terms of the trace-reversed perturbation defined in
lectures : )
§h77‘u1/ (3>

Show that under the gauge transformation above, Eq. (1),

i_zu,, = hy —

Buu — B;w = Buu + gu,u + gu,u - €p7p77,u1/ (4)

Show that it is always possible to impose the Lorentz gauge, 8’”7%, = (0. Namely, show
that if 1, does not satisfy the Lorentz gauge, then one can find a gauge transformation
hu — N, such that the corresponding &), does.

Show that in the absence of matter, the linearised Einstein equations become
Oy = 0 (5)

These equations are very similar to Maxwells equations in empty space : the only difference
is that the perturbations are associated with a metric tensor (2 indices). Convince yourself
that equation (5) is nothing other than the wave equation. Show that a solution for a
wave travelling in the z-direction, is f_zw, = Weik’a“"a where H,,, is the polarisation tensor
and k* = (w,0,0,w) with k> = 0. What is the speed of propagation of the gravitational
wave 7

Electromagnetism and the TT gauge [from D.Langlois
book]

The aim of this exercise is to understand the TT gauge, using electromagnetism as a helpful
example.

1.

The electromagnetic Lagrangian L o« /—¢F,, F* is invariant under the U(1) gauge
transformations A, — A, + 0, x. Use this invariance to show that one can always choose
the Lorentz gauge 9,A" = 0.

. Write down Maxwells equations (in the vacuum) in the Lorentz gauge. Show that there

exists a residual gauge freedom, and use it to fix Ay = 0. (Note that the solution of the
wave eqaution 0,0" f = 0 with initial conditions f = 0 and d;f = 0 on a hypersurface of
t=constant, is f = 0.)

Using the above, show that for gravitational waves propagating in empty space, one can
impose the TT gauge.

Gravitational waves

Consider a non-relativistic system with one degree of freedom, namely a mass p that performs
harmonic oscillations along the z axis : zo(t) = A coswst, with Aws < 1 and w, > 0. (In practise
the system could consist of 2 masses connected by a massless spring, and z,(t) is the relative
coordinate of the centre-of-mass system.)

i) The mass density is given by p(t,7) = pd(x)d(y)d(z — 2(t)). Determine h;;(t, ) at a

distance || = R far from the source.

ii) Calculate h;;" for a wave propagating in the direction ¥ = R with 7 = (0,sin 6, cos ).

Comment on the #-dependence of your result.



