Université Paris Diderot (Paris 7)

D.A. Steer 2023-2024

GENERAL RELATIVTY NPAC

- I/ Introduction to GR
- II/ Special Relativity
 - Brief review (metric signature (-+++))
 - Curvilinear coordinates
 - geodesics
- III/ Physics with gravitational forces: tensors, vectors, and general covariance
 - Curvature: Covariant differentiation, Parallel transport,
 - geodesics and geodesic deviation; Riemann, Ricci and Einstein tensors
- IV/ Einstein equations
 - Spherical bodies and Schwarzschild spacetime
 - Symmetries and Lie Derivatives
 - Particle trajectories
 - Newtonian limit of GR, and tests of GR in the solar system
- V/ Black holes, stars and gravitational collapse.
 - Schwarzschild black hole; coordinate choices.
 - Other black holes.
 - Neutron stars and the Toleman Oppenheimer Volkov equation
- VI/ Linearized GR and Gravitational waves
 - Obtaining the wave equation
 - polarization and number of degrees of freedom carried by GWs
 - Interactions of a GW with a GW detector/interferometer.
- VII/ GWs from binary black holes and neutron stars
 - GWs from binaries; orders of magnitude
 - Rate of energy loss: the quadrupole formula.
 - LIGO-Virgo detections of GWs from different systems.
- VIII/ Cosmology
 - Universe on large scales; FLRW metric; redshift; Hubble constant.
 - Friedmann equations and matter content of universe. ACDM model.
 - Modified gravity vs dark energy
 - IX/ Cosmology with gravitational waves
 - Introduction to 'standard sirens'
 - Measuring the Hubble constant with GWs
 - Early universe cosmology from the stochastic background of GWs