TO21

Comment

1

(2)

The solution of Ex 3 may be found in the book of D.Langlois.

*
$$\nabla_{k} \nabla_{v} \nabla_{\mu} = -\nabla_{v} \nabla_{k} \nabla_{\mu} = -\nabla_{c} R^{c}_{\mu \nu \kappa}$$

*
$$\nabla_{\mathbf{k}} \nabla_{\mathbf{y}} \nabla_{\mathbf{y}} \nabla_{\mathbf{k}} - \nabla_{\mathbf{y}} \nabla_{\mathbf{k}} \nabla_{\mathbf{k}} = \nabla_{\mathbf{k}} \nabla_{\mathbf{y}} (g^{\mu\alpha} \nabla_{\alpha}) - \nabla_{\mathbf{y}} \nabla_{\mathbf{x}} (g^{\mu\alpha} \nabla_{\mathbf{y}})$$

$$= g^{\mu\alpha} (\nabla_{\mathbf{k}} \nabla_{\mathbf{y}\mathbf{l}} \nabla_{\alpha})$$

$$= g^{\mu\alpha} (-\nabla_{\mathbf{k}} R^{\mathbf{c}}_{\alpha \cup \mathbf{k}})$$

$$= -\nabla_{\mathbf{k}} R^{\mathbf{c}\mu} \nabla_{\mathbf{k}}$$

$$= -\nabla^{\mathbf{c}} R_{\mathbf{c}}^{\mu} \nabla_{\mathbf{k}}$$

$$= -\nabla^{\mathbf{c}} R_{\mathbf{c}}^{\mu} \nabla_{\mathbf{k}}$$

$$= + \nabla^{\mathbf{c}} R^{\mu} \nabla_{\mathbf{k}}$$

$$= + \nabla^{\mathbf{c}} R^{\mu} \nabla_{\mathbf{k}}$$

$$\stackrel{\mathbf{c}}{=} + \nabla$$

=> Since V& gap = 0 => V& gBS = 0

$$\begin{array}{l} \underline{\underline{GI}}^{2} \\ \underline{a} \end{pmatrix} H_{u_{p}}^{\prime} &= \underbrace{\partial \underline{x}}^{\alpha} \\ \underline{\partial x}^{\beta} \\ \underline{a} \\ \underline{a$$

(2)

$$det \underline{M} = e^{Tr((\underline{N}\underline{M}))} \qquad (2)$$

$$\Rightarrow S(det \underline{m}) = Tr((\underline{M}^{-1} S\underline{m})) e^{Tr((\underline{N}\underline{M}))}$$

$$= (\underline{M}^{\alpha\beta} S\underline{M}_{\alpha\beta}) det \underline{M}$$

$$\Rightarrow Sg = (g^{\alpha\beta} Sg_{\alpha\beta}) g = -g g_{\alpha\beta} Sg^{\alpha\beta} \qquad [\overline{S}_{\alpha\alpha} g^{\alpha\beta} g_{\beta\alpha}$$

$$= S\overline{I} - g = \frac{1}{2} \frac{1}{\sqrt{-g}} (-Sg)$$

$$= \frac{1}{2} \frac{1}{\sqrt{-g}} (-g) g^{\alpha\beta} Sg_{\alpha\beta}$$

$$= \frac{1}{2} \frac{1}{\sqrt{-g}} (-g) g^{\alpha\beta} Sg_{\alpha\beta} = -\frac{1}{2} \sqrt{-g} g_{\alpha\beta} Sg^{\alpha\beta}.$$

6)
$$\partial_{\mu}(\overline{r-g}) = \frac{1}{2} \overline{r-g} g^{\alpha\beta} g_{\alpha\beta\mu}$$

 $\& \Gamma^{\alpha}_{\mu\alpha} = \frac{1}{2} g^{\alpha\beta} (\overline{g_{\beta\mu}\alpha} + \overline{g_{\epsilon\alpha\mu}} - \overline{g_{\mu\alpha}}, \varepsilon) = \frac{1}{2} g^{\alpha\varepsilon} g_{\epsilon\alpha\mu}$
 $\Rightarrow \partial_{\mu}(\overline{r-g}) = \frac{1}{2} \overline{r-g} \Gamma^{\alpha}_{\mu\alpha}$

7)
$$\nabla_{\alpha} A = \nabla_{\alpha} (\sqrt{-g} A) = \sqrt{-g} (\nabla_{\alpha} A)$$

 $= \sqrt{-g} (\partial_{\alpha} A)$
 $= \sqrt{-g} (\partial_{\alpha} A)$

8) same idea...
9) from result of part \$\$ (1000 (10)

$$\nabla_{\alpha} \nabla^{\alpha} = \partial_{\alpha} D^{\alpha} - 0$$
 (10)
 $\Rightarrow \nabla_{\alpha} (f-g \nabla^{\alpha}) = f-g' (\nabla_{\alpha} \nabla^{\alpha}) = \partial_{\alpha} (D^{\alpha})$
 $= \partial_{\alpha} (f-g \nabla^{\alpha})$
 $= \partial_{\alpha} (f-g \nabla^{\alpha})$

The solution of Ex 3 may be found in the book of D.Langlois.

3

$$TD 2 Ext i$$

$$TD 2 Ext i
$$TD 2 Ext i
$$TD 2 Ext i$$

$$TD 2 Ext i
$$TD 2 Ext i$$

$$TD$$

Now, use that $\nabla_{x} \nabla_{p} A^{M} = \nabla_{p} \nabla_{or} A^{M} = R^{M} \mu \sigma_{p} A^{M}$ (see eg first set of TD solution thanded out, pape 2) Vo Veul - Ve Veux = Rayos un Share Stut (Dr Vsux - Vs Vsux) = Ropasubut gt as required - At 4) Now 1th tem above is $S^{*}u^{S}\nabla_{S}(\nabla_{S}u^{*}) = S^{*}\nabla_{S}[u^{S}\nabla_{S}u^{*}] - S^{*}(\nabla_{S}u^{S})(\nabla_{S}u^{*})$ = o by geodenic equi geodenic - 88 (V& u 8) (V& u"); 2 2nd term, in a similar way us Vs [ss Vs.ux] - us (vs. s) (vs.u) & us VS (Vsux) = u Rup D = ux Vx 5x $= u^{\delta} \nabla_{\delta} \left(u^{\delta} \nabla_{\delta} \widehat{g}^{\alpha} \right) - u^{\delta} \left(\overline{V}_{\delta} \widehat{g}^{\delta} \right) \left(\overline{V}_{\delta} u^{\alpha} \right)$

Hence () 13 R^{α} pre upus $g^{\alpha} = -g^{\alpha} (\nabla_{\alpha} u^{\alpha}) (\nabla_{\alpha} u^{\alpha})$ + WS 28 (42 200) + NE (288) 284) $= -u^{\delta} \nabla_{\delta} \left[u^{\delta} \nabla_{\delta} \xi^{\kappa} \right] + \left[\nabla_{\delta} u^{\sigma'} \right] \left[u^{\delta} \left(\nabla_{\delta} \xi^{\kappa'} \right) \right]$ - 5° (V 5 4 ×)] so we arise at $-R^{x} p_{ss} u p_{ss} \xi_{ss}^{r} = u^{s} \nabla_{s} (u^{s} \nabla_{s} \xi^{s}) - (\nabla_{s} u^{x}) [u^{s} (\nabla_{s} \xi^{s}) + \xi^{s} (\nabla_{s} u^{s})]$ mis vanishes by $\Rightarrow u^{\xi} \nabla_{\xi} \left(u^{\chi} \nabla_{\xi} \xi^{\chi} \right) = -R^{\chi} \rho_{\xi} u^{\xi} u^{\xi} \xi^{\xi}$ ten can be se witter in tens of DES, since First der + Fri grup = u Vrga DE =

$$\begin{aligned} & \delta & u^{\delta} \nabla_{\delta} \left(u^{\delta} \nabla_{\delta} \xi^{\delta} \right) \\ &= u^{\delta} \nabla_{\delta} \left[\frac{D\xi^{\delta}}{D\tau} \right] \\ &= \frac{D}{D\tau} \left[\frac{D\xi^{\delta}}{D\tau} \right] \\ &= \frac{D^{2}\xi^{\delta}}{D\tau^{2}}. \end{aligned}$$

4)

3

Thus we arrive at (7):

$$\int \frac{b^2 f^2}{b^2 t^2} = -R \frac{\alpha}{\beta 88} \frac{b^2 g^2 u^8}{b^2 t^2}$$

TOZ ex5

(i)

) Have
$$\nabla_{QR} \nabla_{Q}V_{R} = -V_{6}R^{5} \mu v_{R}$$

So $[\nabla_{b}\nabla_{c} - \nabla_{c}\nabla_{b}]V_{d} = -V_{F}RF_{d,cb}$
Hence $\nabla_{a}((\nabla_{b}\nabla_{c} - \nabla_{c}\nabla_{b})V_{d})$
 $= -\nabla_{a}(v_{F}RF_{d,cb})$
 $= -(\nabla_{a}V_{F})RF_{d,cb} - V_{F}(\nabla_{a}RF_{d,cb})$
 $= -(\nabla_{a}V_{F})RF_{d,cb} - V_{F}(\nabla_{a}RF_{d,cb})$
 $= R_{b,d}^{2}$
2) for a tessar, T_{cd} ,
 $(\nabla_{a}\nabla_{b} - \nabla_{b}\nabla_{a})T_{cd} = -T_{cf}RF_{d,ba} - T_{fd}RF_{c,ba}$
Since $\nabla_{c}V_{d}$ is a tessar, by construction,
 $(\nabla_{a}\nabla_{b} - \nabla_{b}\nabla_{a})(\nabla_{c}V_{d}) = -R^{F}_{d,ba}(\nabla_{c}V_{F})$
 $-RF_{c,b,a}(\nabla_{F}V_{d})$
how a question q signs...
 $-RF_{d,ba}\nabla_{c}V_{F} = -R_{b,a}F_{d}\nabla_{c}V_{F}$

$$= -R_{abd} \int \nabla_{c} \nabla_{f} \qquad hmm...$$

$$= -R_{abd} \int \nabla_{c} \nabla_{f} \qquad hmm...$$

$$= -R_{bac} c (\nabla_{e} \nabla_{d})$$

$$= -R_{abc} c (\nabla_{e} \nabla_{d})$$

$$= -R_{abc} c (\nabla_{e} \nabla_{d})$$

$$= -R_{abc} c (\nabla_{e} \nabla_{d})$$

$$Let me stich with signs here, which I think are convect (enor in typing the TD, sony...)$$

$$= -R_{abc} c (\nabla_{e} \nabla_{d})$$

3) So we have are are hand $\nabla_{\alpha} \nabla_{b} \nabla_{c} \nabla_{d} - \overline{\nabla}_{a} \nabla_{c} \nabla_{b} \nabla_{d}$ (parts) & on the other hand $\overline{\nabla}_{\alpha} \nabla_{b} \nabla_{c} \nabla_{d} - \overline{\nabla}_{b} \nabla_{\alpha} \nabla_{c} \nabla_{d}$ (parts)

1st two temes is each case are the same, so will also be some if artigymmetric.

Lage 2. Jones differe. But V [a V. V. J = arti sym under interchange of any 2 indices 50 $= -\nabla_{[\alpha}\nabla_{b}\nabla_{c]}$ $= + \nabla_{[b} \nabla_a \nabla_{c]}$ when antisymmized, parts 1 & 2 are identical. tence $\nabla_{[\alpha} \left(\nabla_{b} \nabla_{c]} - \nabla_{c} \nabla_{b]} \right) V \lambda$ V[a Vb - Vb Va) Vc] Vd - Va Vifi Roga f - Vf Va Roga F = - REaber Veva - REabilat F Veva - REabilat F Veva where is (23) · Now, from the cyclicity (and) seen in bottoms, R[abc] e = 0. The tems indulined are identical as [abc] = [bca] So we arrive at

4

(1)3) So
$$SS_{EH} = \int d^{4}x \left[Sg^{\mu\nu} F_{g} G_{\mu\nu} + V_{g} g_{\mu\nu}^{\mu\nu} SR_{\mu\nu} \right]$$

let's look at 2^{nd} from now
 $R_{\mu\nu} = R^{\alpha}{}_{\mu\alpha\nu}$
 $\ell R^{\alpha}{}_{\mu\beta\nu} = \partial_{\nu} \Gamma^{\alpha}{}_{\mu\nu} - \partial_{\nu} \Gamma^{\alpha}{}_{\mu\beta} + \Gamma \Gamma - \Gamma \Gamma$
In locally Hickonschi (coords $\Gamma = 0$, $\partial\Gamma \neq 0$, so in these (coords
 $SR^{\alpha}{}_{\mu\beta\nu} = \partial_{\alpha} \left(S\Gamma^{\alpha}{}_{\mu\nu}\right) - \partial_{\nu} \left(S\Gamma^{\alpha}{}_{\mu\beta}\right) = 0$
Now, $S\Gamma^{\alpha}{}_{\mu\beta} - Recall transf^{\mu}{}_{\alpha\nu} law for \Gamma was (neglecting all
 $\Gamma' = \frac{\partial x'}{\partial x} \frac{\partial x}{\partial x'} \frac{\partial x}{\partial x'} \frac{\partial x'}{\partial x'}$
This last form is indep of Γ , so
 $S\Gamma' = (----------)S\Gamma' = S\Gamma^{\alpha}{}_{\beta\beta}$ (3) a fevor
 $SR^{\alpha}{}_{\mu\beta\nu} = \nabla_{\alpha}(S\Gamma^{\alpha}{}_{\mu\nu}) - \nabla_{\nu}(S\Gamma^{\alpha}{}_{\mu\beta})$$

and must be true & coord as a terror eq".

This is the Palakini identity. Contracting it therefore gives (5)

$$\Rightarrow$$
 SRpro = $\nabla_{\alpha}(SP^{\alpha}_{\mu\nu}) - \nabla_{\nu}(SP^{\alpha}_{\mu\nu})$
So $\nabla g gP^{\nu}SR_{\mu\nu} = \nabla_{\alpha}U^{\alpha}$ whole U^{α} is what is withen
in (12)
which is a torse density
" $U = (T-g)(gSP - gSP)$ "
and since $\nabla_{\alpha}U^{\alpha} = \partial_{\alpha}U^{\alpha}$ (as shown in (4))
 $= SSE_{FH} = \int d^{4}s (Sg^{\alpha\beta} G_{\alpha\beta} \nabla g + \partial_{\alpha}U^{\alpha})$
hast term $\int d^{4}x (\partial_{\alpha}U^{\alpha}) = \int d^{3}x A_{\alpha}U^{\alpha}$ where the
subject in space times with bandary of
space time, with bandaries with vormal
" u .

TD2, ex71) $T_{\mu\nu} = -\frac{2}{\sqrt{-g}} \left(\frac{88}{8g} \mu \right)$ S = SEH + SM $SS = 0 = > - SS_{EH} = - SS_{M}$ =) $\sqrt{q} G_{\mu\nu} = -(-\sqrt{q} T_{\mu\nu})$ Guu = Thu since have set "16TTG=1", left with factor of STTG. Smalle = $\frac{1}{2}\int d^{4}x \int -g\left(-g^{\mu\nu}\left(\partial_{\mu}\phi\right)\left(\partial_{\nu}\phi\right) - M^{2}\phi\right)$ 2) SSmalle = 0 gives e of m for scalar field) infact SSmalle will give stress energy tensor Sinthais Sgp? let's vary wrt metric first (with \$ fixed)

$$\begin{split} & S \frac{d}{d} = \frac{1}{2} \left(d^4 x \left(\left(S \int -g^2 \right) \left(-\left(\partial \phi \right)^2 - m^2 \phi^2 \right) \right) + \sqrt{-g} \left(-S g^{\mu\nu} \right) \left(\partial_{\mu} \phi \partial_{\nu} \phi \right) \right) \\ & = -\frac{1}{2} \sqrt{-g} g_{\mu\nu} \delta g^{\mu\nu}, \ Fel \ Pla 2 \end{split}$$

$$S_{g}S_{maller} = \frac{1}{2} \int d^{4}x \, \left[\frac{1}{2} g_{\mu\nu} \left(\left(\partial \phi \right)^{2} + \omega^{2} \phi^{2} \right) - \partial_{\mu} \phi \, \partial_{\nu} \phi \right] \delta g^{\mu\nu} \, (2)$$

$$= \int_{\mu\nu}^{\pi} T_{\mu\nu} = -\frac{2}{\sqrt{-9}} \frac{\delta s_{mallo}}{\delta g_{\mu\nu}} = -\frac{3}{\sqrt{-9}} \frac{1}{\sqrt{-9}} \int_{\pi}^{\pi} \int_{\pi}^{$$

Clearly yes, True = Typ.

Now want e of a for
$$\phi$$
, so $\xi \phi \beta' = 0$
 $\frac{dwid}{d} a produit}$ $\frac{1}{guv} fixed$
 $guv fixed$
 $guv fixed$
 $\xi \phi \beta = \frac{1}{2} \left(\frac{d^4x}{x} \sqrt{-9} \left(-\frac{1}{2} g^{\mu\nu} (\partial_{\mu} \phi) (\partial_{\nu}(\delta \phi)) - \frac{1}{2} m^2 \phi \delta \phi \right) \right)$
 $\frac{1}{2} pots_y^{\mu} = + \int \frac{d^4x}{2} \left(\frac{1}{2} \left[\sqrt{-9} g^{\mu\nu} \partial_{\nu} \phi \right] \delta \phi - \sqrt{-9} m^2 \phi \delta \phi \right)$
 $+ bounday tem 1 witt neglect assuming $\delta \phi = 0$
 $\frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \left(\sqrt{-9} g^{\mu\nu} \partial_{\nu} \phi \right) - m^2 \phi = 0$
 $\frac{1}{2} \frac{1}{2} \frac{1}{2} \left(\sqrt{-9} g^{\mu\nu} \partial_{\nu} \phi \right) - m^2 \phi = 0$
 $\frac{1}{2} \frac{1}{2} \sqrt{\mu} \left(\frac{1}{2} q^{\mu\nu} \partial_{\nu} \phi \right) - m^2 \phi = 0$$

5 Ð $\nabla_{\mu} \left(\partial^{\mu} \phi \right) = m^{2} \phi ,$ \Rightarrow equivalently $\nabla_{\mu} \nabla^{\mu} \phi = m^2 \phi$ Since $\partial f \phi = \nabla f \phi$ as ϕ is a scalar. Now want to show that $\nabla_{\mu} T^{\mu\nu} = 0$ there are stens $\nabla_{\mu} \left(\partial_{\mu}^{*} \phi \ \partial_{\mu}^{*} \phi \right) = \left[\nabla_{\mu} \left(\nabla^{\mu} \phi \right) \right] \partial^{*} \phi + \left(\partial^{\mu} \phi \right) \\ \nabla_{\mu} \partial^{*} \phi \\ = \left[m^{2} \phi \ \partial^{*} \phi \right] + \left(\partial^{\mu} \phi \right) \left(\nabla_{\mu} \nabla^{*} \phi \right) \\ = \left[m^{2} \phi \ \partial^{*} \phi \right] + \left(\partial^{\mu} \phi \right) \left(\nabla_{\mu} \nabla^{*} \phi \right) \\ = \left[m^{2} \phi \ \partial^{*} \phi \right] + \left(\partial^{\mu} \phi \right) \left(\nabla_{\mu} \nabla^{*} \phi \right) \\ = \left[m^{2} \phi \ \partial^{*} \phi \right] + \left[\partial^{\mu} \phi \right] \left(\nabla_{\mu} \nabla^{*} \phi \right) \\ = \left[m^{2} \phi \ \partial^{*} \phi \right] + \left[\partial^{\mu} \phi \right] \left(\nabla_{\mu} \nabla^{*} \phi \right) \\ = \left[m^{2} \phi \ \partial^{*} \phi \right] + \left[\partial^{\mu} \phi \right] \left(\nabla_{\mu} \nabla^{*} \phi \right) \\ = \left[m^{2} \phi \ \partial^{*} \phi \right] + \left[\partial^{\mu} \phi \right] \left(\nabla_{\mu} \nabla^{*} \phi \right) \\ = \left[m^{2} \phi \ \partial^{*} \phi \right] + \left[\partial^{\mu} \phi \right] \left(\nabla_{\mu} \nabla^{*} \phi \right) \\ = \left[m^{2} \phi \ \partial^{*} \phi \right] + \left[\partial^{\mu} \phi \right] \left(\nabla_{\mu} \nabla^{*} \phi \right) \\ = \left[m^{2} \phi \ \partial^{*} \phi \right] + \left[\partial^{\mu} \phi \right] \left(\nabla_{\mu} \nabla^{*} \phi \right) \\ = \left[m^{2} \phi \ \partial^{*} \phi \right] + \left[\partial^{\mu} \phi \right] \left(\nabla_{\mu} \nabla^{*} \phi \right) \\ = \left[m^{2} \phi \ \partial^{*} \phi \right] + \left[\partial^{\mu} \phi \right] \left(\nabla_{\mu} \nabla^{*} \phi \right) \\ = \left[m^{2} \phi \ \partial^{*} \phi \right] + \left[\partial^{\mu} \phi \right] \left(\nabla_{\mu} \nabla^{*} \phi \right) \\ = \left[m^{2} \phi \ \partial^{*} \phi \right] + \left[\partial^{\mu} \phi \right] \left(\nabla_{\mu} \nabla^{*} \phi \right) \\ = \left[m^{2} \phi \ \partial^{*} \phi \right] + \left[\partial^{\mu} \phi \right] \left(\nabla_{\mu} \nabla^{*} \phi \right) \\ = \left[m^{2} \phi \ \partial^{*} \phi \right]$ $\nabla_{\mu} \left[g^{\mu \sigma} \left(\partial_{\alpha} \phi \right)^2 \right] = g^{\mu \sigma} \nabla_{\mu} \left[\partial_{\alpha} \phi \partial_{\rho} \phi g^{\nu \rho} \right]$ 8 = $2g^{\mu\nu}\left[\nabla_{\mu}(\partial_{\mu}\phi)\partial_{\mu}\phi\right]$ $\nabla_{\mu} \left[m \phi^{2} \phi^{\mu} \right] = 2m \phi \left(\nabla_{\mu} \phi \right) g^{\mu\nu} = 2m^{2} \phi \left(\nabla_{\mu} \phi \right)$ $\overline{U}_{\mu} T \overline{\Gamma}^{\nu} = m^{2} \phi \overline{\partial}^{\nu} \phi + (\partial^{\mu} \phi) (\overline{U}_{\mu} \overline{\nabla}^{\nu} \phi)$ $- \frac{1}{2} \sum_{k=1}^{k} g^{\mu\nu} \overline{V}_{\mu} (\overline{\nabla}_{k} \phi) \partial^{\kappa} \phi + \frac{1}{2} m^{2} \phi \overline{\nabla}^{\mu} \phi \right\}$ Б, • =0 V.

Now, every dusty & pressure.
great def^m was
$$T_{\mu\nu} = (p+p) u_{\mu} u_{\nu} + p g_{\mu\nu}$$
, with $u^{2} = -1$
for Θ we read iff that
 $\left[P = -\frac{1}{12} \left((\partial_{\mu} d)^{2} + \frac{m^{2}}{\mu^{2}} \right) \right]$
& $u_{\mu} = N \partial_{\mu} \phi$ where $N = nom$, coset
such hot $u^{2} = -1$
 $ie N^{2} (\partial_{\mu} d) (\partial_{\mu} d) = -1$
 $N = \pm 1$
 $\sqrt{-(\partial_{\mu} d)^{2}}$.
This Θ as
 $T_{\mu\nu} = (p+p) N^{2} \partial_{\mu} \phi \partial_{\nu} \phi + P g_{\mu\nu}$
 $io_{\mu} \int_{\Theta} (p+p) N^{2} = 1$
 $= p + P = \frac{1}{N^{2}} = s - (\partial_{\mu} \phi)^{2}$
Hence $p = -(\partial_{\mu} \phi)^{2} - P = \frac{1}{2} = -(\partial_{\mu} \phi)^{2} + \frac{1}{2} m^{2} \phi^{2}$
 $\left[Q = -\frac{1}{2} (\partial_{\mu} \phi)^{2} + \frac{1}{2} m^{2} \phi^{2} \right]$

. when $\phi = \phi(t)$ only, 3) $(\partial_{x}\phi)^{2} = -(\partial_{t}\phi)^{2}g^{tt}$ => $\rho = \frac{1}{2}g^{tt}(\phi)^{2} + \frac{1}{2}m^{2}\phi^{2}$ (like KE + PE) $P = + \frac{1}{2}g^{tt}\dot{\phi}^{2} - m^{2}\phi^{2}$ If gtt = 1, as in rosmology, $l = \frac{b^2}{5} + \frac{1}{2}m^2b^2$ $P = \frac{b^2}{2} - \frac{1}{2}m^2 \frac{b^2}{2}$ = /eng Cosmological constant. 3 $S_{naHe} \propto \int d^4 x \sqrt{-g} \Lambda = K \int d^4 x \sqrt{-g} \Lambda$ $T_{\mu\nu} = -\frac{2}{\sqrt{-g}} \frac{SS_{\mu}}{Sg_{\mu\nu}} = -\frac{1}{\sqrt{g}} K \Lambda \left(-\frac{1}{4} \sqrt{Sg_{\mu}} \right)$ = KAgnu Since Vm The = 0, it filows that $\nabla_{\mu} \left(\mathcal{T} g_{\mu\nu} \right) = 0$ $\Rightarrow g_{\mu\nu} \left(\nabla_{\mu}^{r} \Lambda \right) = 0$ $\rightarrow \Lambda = const.$