NPAC Particle Physics
 Course 2 - Symmetries

Eli Ben-Haïm

Fabrice Couderc

Program

1. Conservation laws
2. Spin and angular momenta
2.1 Composition of angular momenta
2.2 Clebsch-Gordan coefficients
2.3 Helicity
3. Flavour symmetries
3.1 Flavour $\mathrm{SU}(2)$ - Isospin
3.2 Other flavour symmetries
4. Discrete symmetries
4.1 Parity
4.2 Charge conjugation
4.3 G-Parity
4.4 $C P$: K^{0} mixing and $C P$ violation
4.5 T and CPT

Clebsch-Gordon coefficients

Note: A square-root sign is to be understood over every coefficient, c.g., for $-8 / 15$ read $-\sqrt{8 / 15}$.

Meson and baryon octets

Another meson octet
($J^{P}=1^{-}$)
$\boldsymbol{\pi} \rightarrow \boldsymbol{\rho}$ (same quark content)
$\boldsymbol{\eta} \rightarrow \boldsymbol{\phi}$ (pure $s \bar{s}$ state)
$K \rightarrow K^{*}$ (same quark content)

The meson octet
$J^{P}=0^{+}$

The baryon octet $J^{P}=1 / 2^{+}$
Remark: we will discuss the parity (P) in the next paragraph

Baryon decuplet

$$
J^{P}=3 / 2^{+}
$$

SU(4) 20-plet

$\boldsymbol{\Xi}_{\mathrm{cc}}{ }^{++}$discovered in 2017 (LHCb at CERN), $\boldsymbol{\Xi}_{\mathrm{cc}}{ }^{+}$and $\boldsymbol{\Omega}_{\mathrm{cc}}{ }^{+}$still missing.

The Wu et al. experiment

- Decay:

$$
\mathrm{Co}^{60}(J=5) \rightarrow \mathrm{Ni}^{60^{*}}(J=4) e^{-\overline{v_{e}}} \quad \mathrm{n} \rightarrow \mathrm{p} e^{-} \overline{\nu_{e}}
$$

- The experiment:
- The spins of cold Co^{60} atoms are aligned in a magnetic field
- Detection of the e^{-}(knowledge of the direction of its momentum)

Result: e- preferentially emitted in the opposite direction to that of spin of the Co (asymmetry!)
if P is conserved, these 2 configurations are equally probable

Wu et al. also swap the direction of the magnetic and repeat the experiment. The result is still the same.

Parity is violated by weak int.

The Wu et al. experiment: scheme of apparatus

4.3 G-Parity

- It is a generalization of charge conjugation, applicable to isospin multiplets and systems of particles.
- The operator G is defined as:

$$
G=C \underset{\lambda}{G} \exp \left(i \pi I_{2}\right)
$$

(180° rotation about the $2^{\text {nd }}$ isospin axis followed by a charge conjugation).

- The G-parity (eigenvalue) of particles belonging to isospin singlets and triplets is:

$$
\eta_{G}=\eta_{C}(-1)^{I}
$$

Eigenvalue of the charge conjugation of Isospin of the multiplet (0 or 1) the (single!) C-eigenstate of the multiplet

Example: $\eta_{G}\left(\pi^{+}\right)=\eta_{C}\left(\pi^{0}\right)(-1)^{1}=(+1)(-1)=-1$
(confirm with the PDG)

- G-parity is a multiplicative quantum number.
- Strong interaction conserves both C and the isospin.
\rightarrow If a process is forbidden by charge conjugation, other processes obtained by isospin rotation are also forbidden.
Note that this is valid even though the charge conjugation is not defined for certain particles in the "isospin-rotated" process.
\Rightarrow G-Parity is conserved by the strong interaction
- This is an illustration of the fact that the $\operatorname{SU}(2)$ symmetry does not consist only in an exchange between two states. It is a symmetry with respect to rotation in the space of the two states.
- Some "non-observations" of processes are easily explainable by G-parity violation (and not in other ways).

Example: non observation of $\rho \rightarrow \pi \pi \pi$ by strong interaction.

Cronin and Fitch experiment: scheme of apparatus

Cronin and Fitch experiment: results

FIG. 3. Angular distribution in three mass ranges for events with $\cos \theta>0.9995$.

Flavor oscillations in the neutral kaons system

 (case with no CP violation) - we will see this in the CPV chapter- Amplitude of an instable particle (e.g. K_{s}):

$$
a_{s}(t)=a_{s}(0) e^{-\left(\frac{i m_{s}}{\hbar}\right) t} e^{-\left(\frac{\Gamma_{s}}{2 \hbar}\right) t}
$$

- Probability:

$$
\begin{aligned}
& \text { - Probability: } \\
& \Gamma(t)=a_{s}(t) a_{s}^{*}(t)=a_{s}(0) a_{s}^{*}(0) e^{-\left(\frac{\Gamma_{s}}{\hbar}\right) t}=\Gamma(0) e^{-\left(\frac{\Gamma_{s}}{\hbar}\right) t} \quad \begin{array}{l}
\text { describes } \\
\text { "mass" }
\end{array}
\end{aligned}
$$

"lifetime"
(exp. law) with $\Gamma=\hbar / \tau$

- For the $\mathrm{K}^{0}-\overline{\mathrm{K}}^{0}$ system:

$$
\begin{aligned}
& \mathrm{K}^{0} \text { system: } \\
& \mathrm{K}_{S}: \quad a_{S}(t)=a_{S}(0) e^{-\left(\frac{\Gamma_{S}}{2 \hbar}+\frac{i m_{S}}{\hbar}\right) t} \\
& \mathrm{~K}_{L}: \quad a_{L}(t)=a_{L}(0) e^{-\left(\frac{\Gamma_{L}}{2 \hbar}+\frac{i m_{L}}{\hbar}\right) t}
\end{aligned}
$$

- CP conservation
$t=0$: pure beam of K^{0}. Given that: $\left|K^{0}\right\rangle=\sqrt{\frac{1}{2}}\left(\left|K_{S}^{0}\right\rangle+\left|K_{L}^{0}\right\rangle\right) \Rightarrow a_{L}(0)=a_{S}(0)=\frac{1}{\sqrt{2}}$ At time t (in natural units):

$$
\Gamma\left(\left|K^{0}\right\rangle(t)\right)=\frac{\left(a_{S}(t)+a_{L}(t)\right)}{\sqrt{2}} \cdot \frac{\left(a_{S}^{*}(t)+a_{L}^{*}(t)\right)}{\sqrt{2}}=\frac{1}{4}\left\{\begin{array}{r}
e^{-\Gamma_{s} t}+e^{-\Gamma_{L} t} \oplus 2 e^{-\frac{\Gamma_{S}+\Gamma_{L}}{2} t} \cos \Delta m t \\
- \text { for } \overline{K^{0}} \\
\left(\Delta m=\left|m_{L}-m_{S}\right|\right)
\end{array}\right\}
$$

$$
\Gamma\left(\left|K^{0}\right\rangle\right)-\Gamma\left(\left|\bar{K}^{0}\right\rangle\right)=e^{-\left[\left(\Gamma_{s}+\Gamma_{L}\right) / 2\right] t} \cos \Delta m t \quad \Gamma\left(\left|K^{0}\right\rangle\right)+\Gamma\left(\left|\bar{K}^{0}\right\rangle\right)=\frac{1}{2}\left(e^{-\Gamma_{s} t}+e^{-\Gamma_{L} t}\right)
$$

The $\mathrm{K}^{0}-\overline{\mathrm{K}}^{0}$ oscillation frequency is $\Delta \mathrm{m}$

