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Program

1. General reminders about the strong interaction
2. A few reminders about quarks and hadrons
3. The SU(3) group and its representations
4. Flavor-SU(3) and hadrons phenomenology
5. Probing the structure of neucleons

5.1 Magnetic moments
5.2 Scattering experiments

Elastic scattering
A first look into Deep Inelastic Scattering (DIS)

6. The QCD running coupling αs(q2)
7. Hadronisation and jets
8. Color and color-SU(3)

The 8 gluons
Why baryons and mesons (confinement)

9. Experimental evidence for color
10. Soft and  collinear divergences in QCD
11. Jets and “infrared safety”



1. General reminders about the SI
• Charge: colour (RGB)
• Interaction particle or gauge boson: gluon (m=0)
• Range: 10-15 m (size of a hadron)
• Typical lifetime of particles decaying by SI: 10-23 s

This is also the typical time for the hadronization process. 
• Acting only on quarks and gluons (more precisely: on coloured objects)

è coloured objects are not observed for more than ~ 10-23 s
• Quarks (antiquarks) carry a single (anti) colour charge: RGB (RGB)
• Gluons carry colour-anticolour’ (e.g. RG…), there are 8 gluons – see course…
• All hadrons are colour-neutral.
• Nuclear forces: Van-der-Waals type forces between colour-neutral nucleons due to 

the distribution of the colour charge inside them.
• Order of magnitude of binding energy in most nuclei: ~8 MeV/nucleon (huge!)
• Comparison of EM and SI binding force:
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2. A few reminders about quarks and hadrons

Gell-Mann first used the term quark, inspired from a citation from James Joyce’s 
“Finnegans Wake”: “Three quarks for Muster Mark”.

• A few properties of the quarks:

• Hadrons are bound states of quarks: mesons (q1q2) and baryons (q1q2q3).
They are more massive than their constituent quarks, due to the strong interaction.
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Name Symbol Mass
(GeV)

Q B S C B T

Down d ~0.005 -⅓ ⅓ 0 0 0 0
Up u <~  md +⅔ ⅓ 0 0 0 0
Strange s ~0.100 -⅓ ⅓ -1 0 0 0
Charmed c 1.27 +⅔ ⅓ 0 1 0 0
Bottom / Beauty b 4.18 -⅓ ⅓ 0 0 -1 0
Top (Truth…) t 173.21 +⅔ ⅓ 0 0 0 1



• Until the beginning of the 1960s, many hadrons are found, in a complete disorder.
• Trying to make a theory to explain the “Zoo” of particles, Gell-Mann and Ne’eman

(1961) notice that the lightest hadrons (only ones known at this time) form structures 
in the (Y, I3) plane (“The Eightfold Way”)

• These particular structures, interpreted as an underlying SU(3) symmetry, suggest 
the existence of  the “quarks” u, d, and s, and that these objects act as if they were 
(to some extent) the same with respect to the (strong) interaction.

• The structures and associated “quarks” for mesons:
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• Similar schemes for baryons:

(These schemes and the quark compositions are important to memorize)
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Important to know:

I3 = Q – Y/2

Y = B + S
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February 1964: discovery of the W–

Bubble chamber in Brookhaven; 
80 000 photos
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Þ Validation of the SU(3) quark 
model

By the time of “The Eightfold Way” the W– baryon has not yet been discovered. 
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(First of all let us remind ourselves what is SU(2), its generators, representations...)

• Ensemble of 3x3 matrices (U), unitary with determinant = 1
• Generators of the group: 32 – 1 = 8 independent hermitian matrices with trace = 0

(T are the generators, and q real rotation angles)

• Only 2 ( = 3 - 1) of the 8 generators can be simultaneously diagonal
= maximum number of commuting generators and number of Casimir operators 
(operators that commute with all the generators) è SU(3) is of rank 2.
Reminder: in SU(2) there is only one Casimir operator (J2, commutes with the Pauli matrices)

• Under SU(3) symmetry, we can “rotate” linear combinations of 3 states and leave 
the system unchanged

where Uij are the elements of any SU(3) matrix U

By analogy with SU(2) (where the generators are Ji = si / 2) we define for SU(3):

  
qi ' = Uij

j=1

3

∑ qj ' ,

  U = ei
!
θ i
!
T

3. The SU(3) group and its representations
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The 8 l matrices in the standard form introduced by Gell-Mann:

• l1 exchanges states 1 and 2 I ± = ½(l1± i l2) states 1 ↔ 2
• l4 exchanges states 1 and 3 V ± = ½(l4± i l5) states 1 ↔ 3
• l6 exchanges states 2 and 3 U ± = ½(l6± i l7) states 2 ↔ 3
• l2 , l5 , l7: same action, with a complex factor
• By analogy with SU(2) (where Ji = si / 2) we define for SU(3):

1 2 3

0 1 0 0 0 1 0 0
1 0 0 , 0 0 , 0 1 0 ,
0 0 0 0 0 0 0 0 0

l l l
-æ ö æ ö æ ö

ç ÷ ç ÷ ç ÷= = = -ç ÷ ç ÷ ç ÷
ç ÷ ç ÷ ç ÷
è ø è ø è ø

i
i

4 5 6

0 0 1 0 0 0 0 0
0 0 0 , 0 0 0 , 0 0 1 ,
1 0 0 0 0 0 1 0

l l l
-æ ö æ ö æ ö

ç ÷ ç ÷ ç ÷= = =ç ÷ ç ÷ ç ÷
ç ÷ ç ÷ ç ÷
è ø è ø è ø

i

i

7 8

0 0 0 1 0 0
10 0 , 0 1 0 .
30 0 0 0 2

l l
æ ö æ ö
ç ÷ ç ÷= - =ç ÷ ç ÷
ç ÷ ç ÷-è ø è ø

i
i

The s matrices. SU(2) is a sub-group of SU(3)…

2 diagonal matrices:
• additive quantum numbers
• simultaneously measured 
quantities

☆ l4..7 easily understandable 
in terms of s.

☆ Verify the properties of the 
matrices, e.g.0-trace, linear 
independence.  

Raising and lowering operators
(move among states in a representation)

☆ The 3 symmetric states:
1 0 0
0 , 1 , 0
0 0 1

æ ö æ ö æ ö
ç ÷ ç ÷ ç ÷
ç ÷ ç ÷ ç ÷
ç ÷ ç ÷ ç ÷
è ø è ø è ø

  
Ti =

λi

2
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The three symmetric states are defined by the additive quantum numbers given by 
the eigenvalues of the diagonal generators (with a slight change for T8…)

It is easy to verify the action of the raising/lowering operators on the electric charge 
and the strangeness. They allow to move among the states in a multiplet.

If applied on an element lying in the extremity of a multiplet to make a “step outside”, 
these operators yield 0, like J± of SU(2). They provide a way to construct the 
“allowed” multiplets.

I3 = Q – Y/2 = T3

Y = B + S   ≡ (2/√3)T8

I ± (S®S) (Q®Q±1)

U± (Q®Q ; S®S±1)

V± (Q®Q ±1 ; S®S±1)

1/2

1/3

-2/3

Y

I3

I ±

U± V±

-1/2



Multiplets (representations)  of SU(3)

1111

1/2

1/3

-2/3

3

Fundamental 
representations 
(“the bricks”)

1

1

1

-1

-2

10

1

-1
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1/2

2/3

-1/3

3

2/3

-2/3
1

6

1/2

-4/3

Like SU(2) multiplets, they are completely determined by the group’s algebra: all the members of the same multiplet
have the same eigenvalues of the Casimir operators (two numbers). This is understandable by the fact that the Casimir
operators commute with the generators, and thus with the rising/lowering operators.

(See ES) 
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5

2

2

The example of D(5,2)

• The multiplet is characterized by two 
numbers (these are not the Casimir
operators).

• Generally, the multiplet is a hexagon
(a triangle is a hexagon with one side =0)

• The multiplicity is incremented in each step 
towards the center.

• Maximum multiplicity: number of members 
on the shorter side.

Using this notation:
3 = D(1,0) ; 3 = D(0,1) ; 8 = D(1,1) ; 10 = 

D(3,0)…
(The first number is the number of “3” used to 
construct the multiplet, and the second is the 
number of “3”)
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The construction of a general multiplet:
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4. Flavor SU(3) and hadrons phenomenology
,   ,                   3  

,   ,                   3  

u d s

u d s

Strangeness:

S(u,d) = 0

S(s) = –1

Electric charge:

Q(u) = 2/3

Q(d,s) = –1/3

Baryon number:

B(u,d,s) = 1/3

Isospin:

I3(u,d) = ±1/2

I3(s) = 0

The fundamental representations

u

Y

I3

1/2 1

1/3

2/3

d

s

3

–2/3

s

du

3 ̅
Y

I31/2 1

2/3

–1/3

I3 = Q – Y/2   ;    Y = B + S
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• Mesons are         states.
• With only u and d quarks, combinations of SU(2):

(we only consider isospin)

• Graphically: 

• Analytically (see exercise) we can obtain (pay attention to signs):

21q q

( )

( )

3

3

3

3

1, 1

1, 0 1 2

1, 1

0, 0 1 2

I I ud

I I uu dd

I I du

I I uu dd

ì = = = -
ï

= = = -ïï
í

= = - =ï
ï

= = = +ïî

-1/2 1/2 -1/2 1/2

-1/2 1/2

Construction of meson multiplets:

2 Ä 2 ̅ = 1 Å 3

We obtain the singlet and the triplet

Multiplet of quarks
Multiplet of anti-

quarks (see exercise)

I3 I3

I3

ud u d

ìï= í
-ïî

ìï= - í
ïî

3

3

(2)1
2 (2)

(2)1
2 (2)

u
I

d

d
I

u

(Same coefficient for the two members of the singlet)
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Y

I3
1/2 1

2/3

With u,d,s (triangles are equilateral) 

I3
u

Y

1/2 1

1/3

2/3

d

s

Multiplet
of quarks

Y

I3

s

du Multiplet of 
anti-quarks

3 states I3=0, Y=0: A,B,C
One singlet (C),
2 members of the octet (A,B)

3Ä3

1Å8
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The states I3=0, Y=0 of 3Ä3 ̅

• The states A, B and C are linear combinations of uu, dd and ss

• The singlet C of SU(3) must contain a combination with the same weights 
of uu, dd and ss (same as for isospin singlet:     )

• A is defined as a part of the isospin triplet (du, A, -ud) :

It is a real particle because isospin-SU(2) is almost an exact symmetry
• A, B and C must be orthogonal with respect to each other (eigenstates of a 

hermitian operator are orthogonal and have real eigenvalues). From this 
condition, the isospin singlet B is:

( )1
1
3

C uu dd ssh = = + +

( )0 1
2

A uu ddp = = -

( )8
1 2
6

B uu dd ssh = = + -

( )30, 0 1 2I I uu dd= = = +
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• As quarks have spin ½ , mesons with ℓ=0 can have JP = 0– or 1–

• For the state with isospin I = 0
– h, h’ are linear combinations of h1, h8 that can mix because flavor-SU(3) 

is not an exact symmetry, and because they have the same quantum 
numbers (I=0, I3=S=0).

– Same for the physical states w and f, which are mixtures of f1 et f8 
(identical argumentation for the JP = 1– meson multiplet)

( )1
2
uu dd

ss

w

f

= +

=

Pure       statess

particular case with a 
nearly maximal mixing 
angle c = 45o

c is the mixing angle. It has to be measured  
experimentally, e.g. with h®gg (explain…)

1 8

8 1

sin cos
' sin cos

h h c h c
h h c h c

= -
= +
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=
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+

3 3
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8

=
8 1
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3 3

Construction of baryon multiplets: 3Ä3Ä3
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2/3

-2/3

-4/3

0

Ä Å

uudd

ss

1/Ö2(ud-du)

With a 3rd quark:

Y

1

0

Y

-1

-2
sss

ddd uuu

Å Å Å

Spin:
2 Ä 2 Ä 2 

= 4 Å 2 Å 2
S   MS MA

S    MS MA      A

6 is symmetric wrt exchange of 2 quarks
3̅ is antisymmetric wrt exchange of 2 
quarks

MS et MA  indicate the symmetry (S) or anti-
symmetry (A) by exchange of the first 2 quarks

3 Ä 3 = 6 Å 3 ̅

3 Ä 3 Ä 3 = 10 Å 8 Å 8 Å 1

For info. only We can define categories wrt flavor-SU(3) and spin-SU(2). For example: 

S: (10,4) + (8,2), MS : (10,2) + (8,4) + (8,2) + (1,2), A: (1,4) + (8,2)

We find for baryons with 3/2+ S (10,4)), 1/2+ (S (8,2)), but things get complicated…
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• The idea is similar to the Rutherford experiment:
a pointlike projectile on an object that is supposed to have internal 
structure
⇒ use e−p scattering, this time with larger energies:

2pl =
k
!

q=(k-k’)

e- (E’,k’)
qe- (E,k)

Larger E ó smaller l

l gives the order of de magnitude of the size of 
structures probed by the electron inside the proton.

X = p (elastic);
state with several hadrons (inelastic)

5. Probing the structure of the proton
Scattering experiments
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• With a diagram:

• q² experimentally accessible, by measuring E’, q (quantities of the lepton!)

• Remark:

Clearly, for a given s, l decreases when q increases.  
è Large-angle scattering is related to probing small structures in the proton.

e-
(E’,k’)

X

e-
(E,k)

g (q)

p

   

q
!
= k
!
−k
!

'       q0 = E −E '
Q2 = −q2

In fact, the g probes 
the proton

   

−q2 =
!
k -
!
k '( )

2
− E - E '( )2

= −2m2 − 2kk 'cosθ + 2EE '

≈ 2EE ' 1−cosθ( ) = 4EE 'sin2 θ / 2( )       

√a

F √a F: form factor. It is constant (=1) for a 
pointlike object. 
This is what we want to measure…

( )
p pl

q
= @

! !2 2
2 ' sin / 2q EE
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This is a purely EM process!

First Elastic e− p scattering: 
McAllister and Hofstadter, using 
188 MeV electrons on hydrogen 
target (SLAC, 1956), before the 
quark model [the plot here].
Interpretation was not easy 
without quarks.

Experiments with higher energies 
were performed in the late 1960 
(next slide)

(unit charge, no mag. mom.)

Point proton with

Elastic e−p scattering
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2 2 2( )X p

Q q
W M p q

= -

= = +

Definitions: 

([inv-mass]² of the hadronic system)
Elastic scattering: non-pointlike object (F(Q²)<1).
è probability for coherent scattering with sub-
structures strongly reduces with Q²

DIS:
Spectacular behavior of F!
• F ~ constant (Q²)  Þ collision with pointlike

particles inside the proton that behave as if 
they were free!!!

• F<1 Þ the pointlike objects carry a fraction
of the proton mass

These pointlike objects, initially called 
partons, are quarks and gluons

Remarks:
• Quarks have been shown to have spin ½ (in a 

few slides…)
• We have other proofs of quarks (e.g. e+e−®qq)

(~
 F

²)
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SLAC 1969

Q²

DIS

(s MOTT: 
pointlike
object)

elastic 
scattering
(W = mp)

Inelastic scattering
(intermediate regime)

A first look into Deep Inelastic Scattering (DIS), e−p → e−X 

larger W
à flatter
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αs running: experimental results
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Event displays with jets
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Angular distributions of e+e- → qq
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R = σ (e+e− →  hadrons)
σ (e+e− → µ+µ − )

( s )
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Schematics of a hadron collision
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Multiple interactions in a bunch crossing (“pile up”)
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Proton content


