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Program

The two sections:

- Soft and collinear divergences

- Jets and infrared safety

at the end of the Introduction to QCD are very much
relevant for this course.

Also PDFs, presented in the course about DIS

1. Initial/final state and factorization
1.1 PDFs
1.2 Fragmentation
2. Kinematics at hadron colliders (reminder)
3. Example: di-jet production at the LHC
4. Monte Carlo event generators
5. Jet reconstruction



Schematics of a hadron collision
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Proton content

proton 1 proton 2




Factorization

NAIVE PARTON MODEL




PDF evolution
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Fragmentation |
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Fragmentation |l

Perturbative (calculable in QCD) | Non-perturbative (non-calculable,

| .
The boundary depends on the perturbative I usually described by a

QCD computation (order and technique of | ——>! hadronisation model)

resummation, Monte Carlo generator...)

Large soft logs

) 10g2n—1—k A
aS
Large collinear logs A 4 P

I
|
|
|
I
|
|
n n—k S /’WI
a. log (—J e = >
m \ e T -
e Y 5 - | ® —
g L~ -
) /Errrrrrrrrﬁwnﬁf| _2 B—
- —O ————— <\\ | c T
Z b~ : o I
. G - —
~ T
| —2 B
~_l —:-3 - -<
—
T



Fragmentation Il

Fragmentation function: probability density function of a variable relating quark -

weak

Ap

weak

hadron kinematics (X, , »Z)

Directly measurable by experiments =Defined within event generators
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Hadronisation

Fold together
two components:
perturbative ®
non-perturbative
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b-quark Fragmentation measurements from LEP
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xg"eak = 0.7092 + 0.0025
(The b-hadron takes ~70% of the b-quark energy)
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Fragmentation: Peterson model for b and ¢ quarks

(non-perturbative component)

Dolz)

Peterson FF: (C. Peterson,
D.Schlatter,|.Schmitt,P.Zerwas, PRD27 (1983) 105)
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CMS acceptance
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2 — 2 processes at the LHC

For illustration... as a part of the example of the dijet cross-section calculation

Process Jdy
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CMS dijet cross-section
—~1 016 CMS Preliminary L = 4.7 [ft?‘ Vs =7 TeV anti-k, R =0.7
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Parton showers and clustering

String fragmentation (Pythia)

Cluster fragmentation (Herwig)
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Event display with jets

JATLAS
2 EXPERIMENT

Run Number: 16646
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Jet algorithms |

* Two main families of jet algorithms:
* Top-down => cone algorithms
* Bottom-up -2 sequential recombination

* Example of a top-down algorithm: cone algorithm with seed

Definition: jet radius R = Ay?+ A¢?
Here, a fixed R is the main parameter

Order objects (particles) by decreasing pr
Choose 1% object (maximum pr) as the seed
Collect all objects in a cone within R around the seed
Recalculate jet axis
Stable axis?
No -2 take new jet axis as seed (from step 4), go to step 3
Yes -2 the ensemble of objects is a jet. Remove from list and go to step 2
(until the list 1s empty)

-

It 1s clear that this algorithm gives round jets
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Jet algorithms ||

* Example of a bottom-up algorithm: Inclusive kr algorithm
(iterative pairwise clustering)

Definitions: d;; (distance between two objects 1, j)
d;g (between object 1 and beam)

: AR : 2 2
di; = min(pg;, P%j)R_z] with ARizj:(Yi -y;) +(di = ))

dig = D%

1. For each particle/object i compute the distances d;; and d;p
2. Find the minimum distance of all
3. Isitd;jordig?
d;; = combine i + j into a single object and go to step 1
d;g =2 objectiis a jet. Remove it from the list and go to step 1
(until the list 1s empty)
Use only jets with pr > prmin

Features:
+ collinear and IR safe

+ each hadron uniquely assigned to a jet
— sensitive to noise (underlying event, pile-up...)
— It 1s clear that this algorithm gives jets with complicated shapes

x Nlog N

Computing time (for N objects)
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Jet algorithms Il

* Anti- kyalgorithm

: o _\BRj
same as kr, with 1 d;; = min(pz, prj )03

This gives more regular jets and is easier to calibrate experimentally
—> it is often used in LHC experiments

In general, the jet radius R has to be optimized to reject background and keep signal

* Less pollution from underlying event and pileup = small R
e Include QCD radiation;

englobe particles that participate in hadronization = large R
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Jet algorithms |V
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