Quantum ChromoDynamics QCD Lagrangian and SU(3) structure

Particle Physics
Fabrice Couderc / Eli BenHaim

Overview

- QED Lagrangian, reminder
- Building the QCD Lagrangian
\checkmark Recipe from QED and implications
\checkmark Feynman rules
- QCD group structure
\checkmark Gluon emission and gluon splitting
\checkmark Infra red divergence, soft gluon emission probability
\checkmark Hadron multiplicity measurements
\checkmark 3jets / 4 jets measurements
- Color Factor
\checkmark qq and q \bar{q} interaction
\checkmark QCD potential and meson stability
- Strong coupling constant measurements at the LHC
\checkmark Total cross section at the LHC
\checkmark Inclusive jet production
\checkmark 3jets / 2jets ratio

QCD Lagrangian

Free field propagation (propagators)
Interaction quarks gluon (a la QED)
Vertex 3 gluons (due to the Abelian group)
Vertex 4 gluons (due to the Abelian group)

$$
\begin{aligned}
\mathcal{L}_{\mathrm{QCD}}= & -\frac{1}{4}\left(\partial_{\mu} G_{\nu}^{a}-\partial_{\nu} G_{\mu}^{a}\right)\left(\partial_{\mu} G_{\nu}^{a}-\partial_{\nu} G_{\mu}^{a}\right)+\bar{\psi}(i \not \partial-m) \psi \\
& +g_{s} \bar{\psi}_{i} \gamma^{\mu}\left(t^{a}\right)_{i j} \psi_{j} G_{\mu}^{a} \\
& -\frac{g_{s}}{2} f^{a b c}\left(\partial_{\mu} G_{\nu}^{a}-\partial_{\nu} G_{\mu}^{a}\right) G^{b \mu} G^{c \nu} \\
& -\frac{g_{s}^{2}}{4} f^{a b c} f^{a d e} G_{\mu}^{b} G_{\nu}^{c} G^{d \mu} G^{e \nu}
\end{aligned}
$$

Fermions lines carry a color charge!

$$
\begin{array}{ll}
c_{i} u_{f}^{(s)}\left(p^{\mu}\right) & \text { incoming } \\
c_{i}^{\dagger} \bar{u}_{f}^{(s)}\left(p^{\mu}\right) & \text { outgoing } \\
c_{i}^{\dagger} \bar{v}_{f}^{(s)}\left(p^{\mu}\right) & \text { incoming } \\
c_{i} v_{f}^{(s)}\left(p^{\mu}\right) & \text { outgoing }
\end{array}
$$

One trivial basis for color

$$
c_{r}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) \quad c_{g}=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) \quad c_{b}=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)
$$

Interaction (or completeness)

$$
\begin{array}{rlrl}
t^{1} & =\frac{1}{2}\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), & t^{2}=\frac{1}{2}\left(\begin{array}{ccc}
0 & -i & 0 \\
i & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \quad t^{3}=\frac{1}{2}\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 0
\end{array}\right), \\
t^{4}=\frac{1}{2}\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right), & t^{5}=\frac{1}{2}\left(\begin{array}{ccc}
0 & 0 & -i \\
0 & 0 & 0 \\
i & 0 & 0
\end{array}\right), \\
t^{6}=\frac{1}{2}\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right), & t^{7}=\frac{1}{2}\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -i \\
0 & i & 0
\end{array}\right), \quad t^{8}=\frac{1}{2 \sqrt{3}}\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -2
\end{array}\right) .
\end{array}
$$

The group structure of QCD

From the PDG

Useful color-algebra relations include: $t_{a b}^{A} t_{b c}^{A}=C_{F} \delta_{a c}$, where $C_{F} \equiv\left(N_{c}^{2}-1\right) /\left(2 N_{c}\right)=$ $4 / 3$ is the color-factor ("Casimir") associated with gluon emission from a quark; $f_{A C D} f_{B C D}=C_{A} \delta_{A B}$ where $C_{A} \equiv N_{c}=3$ is the color-factor associated with gluon emission from a gluon; $t_{a b}^{A} t_{a b}^{B}=T_{R} \delta_{A B}$, where $T_{R}=1 / 2$ is the color-factor for a gluon to split to a $q \bar{q}$ pair.

$\sum_{a=1}^{N_{A}}\left(T^{a} T^{\dagger a}\right)_{i j}=\delta_{i j} C_{F}$
$\sum_{a, b=1}^{N_{A}} f^{a b c} f^{* a b d}=\delta^{c d} C_{A}$,

$$
\sum_{i, j=1}^{N_{F}} T_{i j}^{a} T_{j i}^{\dagger b}=\delta^{a b} T_{F}
$$

Measuring the group structure

$\mathrm{N}_{\mathrm{ch}}=$ charge hadron multiplicity in a jet

Ratio of the "slopes"
$R=2.22 \pm 0.11$

Measuring the group structure

- LEP events with 3 and 4 jets

Quark - antiquark interaction

Color flow $q \bar{q}$

Color factors

Example of qq and qqbar scattering

$q \bar{q} \rightarrow q \bar{q}$	$q q \rightarrow q q$	$f(J j k)$
$x x \rightarrow x x$	$x x \rightarrow x x$	$f(x x x x)=+1 / 3$
$x x \rightarrow y y$	$x y \rightarrow y x$	$f(y x x y)=+1 / 2$
$x y \rightarrow x y$	$x y \rightarrow x y$	$f(x x y y)=-1 / 6$
$x y \rightarrow y x$	$x x \rightarrow y y$	$f(y x y x)=0$

QCD running measurement

Measuring the running of a_{s} is still a very active field at LHC Important to predict any cross section!!!

Total cross section at the LHC

R32 : 3jets to 2 jets production

Naively $\sigma[2$ jets $] \propto \alpha_{s^{2}} ; \sigma[3$ jets $] \propto \alpha_{s}{ }^{3} \Rightarrow \sigma[3$ jets $] / \sigma[2$ jets $] \propto \alpha_{s}$
several systematics cancel in the ratio
(e.g. pdf uncertainty greatly reduced)

$$
\mu_{\mathrm{R}}=\left(\mathrm{p}_{\mathrm{T} 1}+\mathrm{p}_{\mathrm{T} 2}\right) / 2
$$

World average:

$$
\alpha_{\mathrm{s}}\left(\mathrm{M}_{\mathrm{z}}\right)=0.1184 \pm 0.0007
$$

CMS 3 / 2 jets:

$$
\alpha_{\mathrm{s}}\left(\mathrm{M}_{\mathrm{Z}}\right)=0.1148 \pm 0.006
$$

