
M2 NPAC Academic year 2022-2023

Final exam of Particle Physics
Monday February 6th 2023

Duration: 3 hours
8 printed pages

Allowed material: PDG booklet, simple calculator.
Solve on two separate sheets exercise I-II and exercises III-IV.

Approximate duration per exercise:
Ex. I: 20 min. Ex. II: 70 min.
Ex. III: 20 min. Ex. IV: 70 min.

Exercise I
Short questions on the lectures and general understanding

Reply shortly and succinctly to the questions below. The shortest answer that details in a
comprehensive manner all the relevant arguments is the best.

1. Explain the role of the BEH mechanism in the Standard Model: why is it introduced (the
issues to solve and the way they are solved)? Do we have any experimental proof that this
mathematical conception is actually realised?

2. Using the relations in the appendix, show that the spinor u transforms by the parity operator
into u′ = γ0u, and that ū′ = u†. Explain.

3. In the context of QCD and hadron collisions, define and explain what is an infrared-safe
observable. Give an example and a counter-example of such an observable, along with a
short explanation.

4. An observable that drew much attention from particle physicists recently is the ratio

RK =
Γ(B+ → K+µ+µ−)

Γ(B+ → K+e+e−)
,

measured in intervals of the invariant mass of the dilepton (µ+µ− or e+e−) system. What is
the approximate expected value for this observable in the standard model? Use qualitative
arguments to explain your answer. Why is this observable interesting to measure?
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Exercise II
Z production at e+e− colliders

In this exercise, we consider the interaction e−e+ → ff̄ , where f is a fermion, at LEP or SLC.
LEP and SLC were e−e+ colliders, SLC had in addition the capability of polarizing the electron
beam. We consider the energy

√
s = 91.2 GeV and as a consequence we neglect the EM

interaction.

e2 = 4πα α = 1/128
s2w ≡ sin2 θw = 0.23 mZ = 91.2 GeV

(1)

The couplings of the Z boson to fermions are given by:

gfX = i
e

cos θw sin θw
×
(
If

X
3 −Qf sin

2 θw
)
, (2)

with X ∈ [L,R]. The Feynman rules are given in the appendix. We will note PX the projector
on the chirality X.

1. Z boson partial and total widths

(a) What are the values of If
X
3 , Qf , for the following particles: ντX , µ−

X , cX , bX for
X ∈ [L,R].

(b) Draw the Feynman diagram for the decay Z → ff̄ and the corresponding matrix
element. We note p and p′ the 4-momenta of f and f̄ , respectively.

(c) In the SM, what are the values of Γ(Z → fLf̄L) and Γ(Z → fRf̄R)? Justify.

(d) We quote Γf
L ≡ Γ(Z → fLf̄R) and Γf

R ≡ Γ(Z → fRf̄L). We remind you that for a
two-body decay:

dΓ

dΩ
(Z → ff̄) =

p∗f
32 π2m2

Z

|M(Z → ff̄)|2 . (3)

We quote AX = ū(p)γµ PX v(p′)ϵµ(Z) for X ∈ [L,R] and we remind you that |AL|2 =
|AR|2 = 2m2

Z . Compute the value of Γf
L and Γf

R as a function of mZ , g
f
X (justify any

approximation if need be).

(e) Compute the numerical value of Γ(Z → νeν̄e). Quid of the other neutrino families?
Compare this result to the PDG value: Γ(Z → invisible) = 499.0± 1.5 MeV.

(f) We define the fermion left-right asymmetry as:

Af =
Γf
L − Γf

R

Γf
L + Γf

R

. (4)

Define Af as a function for gfx . Explicit your result as a function of e, θW , If3 ≡ If
L
3

and Qf .

(g) Find the numerical value of Ae.
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2. Z boson production

The SLC collider had a polarized electron beam. The polarization is defined as:

Pe =
N+

e− −N−
e−

N+
e− +N−

e−
, (5)

with N+
e− (N−

e−) the number of electrons with a positive (negative) helicity.

(a) Draw the Feynman diagram for the process e−e+ → Z∗ → ff̄ . Write the corresponding
matrix element as a function geX and gfY .

(b) Define a potential connection between helicity and the chirality for fermions at play in
this reaction.

(c) We note

• dσf
LL ≡ dσ(e−Le

+
R → fLf̄R), dσf

LR ≡ dσ(e−Le
+
R → fRf̄L),

• dσf
RL ≡ dσ(e−Re

+
L → fLf̄R), dσf

RR ≡ dσ(e−Re
+
L → fRf̄L).

What is the value of dσf
L ≡ dσ(e−Le

+ → ff̄) as a function for the aforementioned
dσf

XY ? Same question for dσf
R ≡ dσ(e−Re

+ → ff̄).

(d) With a polarized beam, the cross section is given by:

dσf

d cos θ
≡ dσ(e−e+ → ff̄)

d cos θ
=

3

8
σ0
f

[
(1 + cos2 θ)(1− PeAe) + 2 cos θ(Ae − Pe)Af

]
,

(6)
with Ae, Af defined in Eq. (4), and σ0

f the total cross section for fermion f in the case
of an unpolarized beam, Pe = 0.
Which value of Pe would you need to measure σf

R (justify without any computation)?
Same question for σf

L.

(e) Demonstrate that the total cross section σf from Eq. 6 is not sensitive to Af .

(f) Propose a method that would allow to measure Af (even if Pe = 0).

(g) Compute the total cross sections σ±
tot for Pe = ±|Pe|.

(h) Propose an asymmetry to determine Ae and compute this asymmetry as a function of
Ae and |Pe|.

(i) The number of Z bosons collected with Pe = +|Pe| (resp. Pe = −|Pe|) was 234748
(resp. 291775), while the average polarisation was |Pe| = 71.5 %. What is the numerical
value of Ae?

(j) The LEP collider produced about 18 million Z bosons. Despite having a sample 36
times larger than SLC, the precision on Ae is identical for both colliders. Find the
main reason (hint: you can think about the size of the sample used in the method you
proposed in question 2.f).

Change sheet here
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Exercice III
Allowed and forbidden processes, Feynman diagrams

For each of the processes below, determine whether it is allowed or forbidden in the standard
model. For the forbidden processes, explain why they are forbidden, giving all the possible rea-
sons (here we do not require to take into account multiplicative quantum numbers and angular
momentum). For the allowed processes, specify and justify by which dominant interaction they
occur and draw the corresponding Feynman diagrams (one per process). Give all the relevant
arguments you find to justify the interaction, and, when applicable, name the topology of the
Feynman diagram. Note on the diagram the names of all real and virtual particles. When rel-
evant, indicate near the vertex the CKM matrix elements that contribute and give their orders
of magnitude in terms of λ = sin θc (θc is the Cabibbo angle). Then, give the total order of
magnitude of the diagram in terms of λ. In the case of Penguin or box diagrams, do this for the
dominant intermediate quarks. In general, tree processes are favoured compared to penguin or
box processes. We will thus try to privilege tree diagrams when several topologies are possible.
Also, if possible, we will try to privilege colour allowed to colour suppressed diagrams.

1. Ω− → Ξ−π0 2. Ω− → Λπ−

3. e+e− → ppn 4. B− → τ−τ+τ−ντ
5. π+n → Λ0

bB
+ 6. B0

s → K0τ+τ−

Exercice IV
B meson decays into K0

SK
+K−

This exercise will study a few aspects of B meson decays into three kaons. We will look
in particular into the mode B0 → K0

SK
+K−, with special attention to the resonant mode

B0 → ϕK0
S (ϕ → K+K−), where the K+K− pair originates from the decay of a ϕ(1020) meson,

denoted ϕ.

Parts 1-4 below are independent.

1. Kinematics

We consider the decay of a particle of mass M into three particles of masses m1, m2 and
m3, with momentum-energy 4-vectors P1, P2 and P3, respectively. The spins of all these
particles are 0. The dynamics of such processes is often represented in a Dalitz plot: the
plane of square invariant masses m2

12, m
2
23, where m2

ij = (Pi + Pj)
2. A generic Dalitz plot

is shown in Figure 1-left, and the distribution of B0 → K0
SK

+K− over the Dalitz plot, as
observed by the BABAR experiment, is shown in Figure 1-right.

(a) Show that, in the considered three-body decay, two degrees of freedom are needed to
describe the final state.

(b) Show that the global maximum of m23 is M−m1. What is the corresponding kinematic
configuration of the three final-state particles?

(c) Show that the global minimum of m23 is m2+m3. What is the corresponding kinematic
configuration of the three final-state particles?

(d) In Figure 1-right, there is a cluster of events on the left of the Dalitz-plot. Suggest an
explanation for this.
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Figure 1: (Left) A Dalitz plot describing a decay of a particle of mass M into three particles
of masses m1, m2 and m3. The shaded area shows the kinematically-allowed region. (Right)
Dalitz-plot distribution of B0 → K0

SK
+K− decays, obtained by the BABAR experiment [PRD

85, 112010 (2012)].

2. Study of the ϕ-meson decays

The ϕ meson is a pure ss̄ state, decaying predominantly into either K+K− or K0K0 via
strong interaction.

(a) Briefly explain why the quark content of the ϕ meson is not compatible with the hy-
pothesis that SU(3)-flavour is an exact symmetry.

(b) Using the PDG, give the two branching fractions of ϕ → K+K− and ϕ → K0K0 (given
as ϕ → K0

SK
0
L). Compare them to the branching fraction of the decay ϕ → π+π−. What

is the explanation for the difference? What is the role of isospin in this difference?

3. Angular distribution of the decay products in the process ϕ → K+K−

We define the z axis as the flight axis of the ϕ meson in the laboratory frame, and the z′ axis
as the flight direction of the K+ in the centre of mass of the ϕ meson. The angle between
the two axes is denoted θ.

(a) Obtain the angular distribution of the decay products as a function of θ, when the spin
of the ϕ meson is aligned with the z axis.

(b) Using a simple argument, justify the values obtained at θ = 0, θ = 180◦.

4. CP violation in B0 → ϕK0
S (with ϕ → K+K−) decays

The time-dependent CP asymmetry is written

ACP (∆t) =
Γ(B0 → ϕK0

S)− Γ(B0 → ϕK0
S)

Γ(B0 → ϕK0
S) + Γ(B0 → ϕK0

S)
= S sin(∆md∆t)− C cos(∆md∆t) ,

with

S =
2ImλCP

1 + |λCP |2
, C =

1− |λCP |2

1 + |λCP |2
, λCP =

q

p

ĀϕK0
S

AϕK0
S

.
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(a) Remind what is the physical meaning of the parameters ∆md, q and p. What are AϕK0
S

and ĀϕK0
S
?

(b) Which types of CP violation can be studied using the decay B0 → ϕK0
S ? Explain.

We will now, step by step, study the expression of λCP . The Wolfenstein parameterisations
of the CKM matrix at O(λ3) and O(λ5) (where λ is the sine of the Cabibbo angle) are
given in the appendix, as well as the expression of the matrix in term of angles of unitarity
triangles (CKM angles) at O(λ4).

(c) briefly justify the fact that q
p
=

V ∗
tbVtd

VtbV
∗
td
, and obtain its expression at O(λ4) as a function

of the CKM angle β.

The ratio of amplitudes may be written as

ĀϕK0
S

AϕK0
S

= ηCPϕK0
S

ĀϕK0

AϕK0

VcsV
∗
cd

V ∗
csVcd

(7)

(d) Obtain ηCP
ϕK0

S
, the CP eigenvalue of the final state ϕK0

S in the decay under scrutiny,

using the approximation that the K0
S is a CP eigenstate with CP = 1.

(e) Besides ηCP
ϕK0

S
, explain the factorisation of the rest of the expression of Eq (7) in two

parts, and the source of the term
VcsV ∗

cd

V ∗
csVcd

. Drawing a Feynman diagram may be useful.

(f) Obtain this term at O(λ4).

(g) Draw the Feynman diagrams (gluonic penguins) of B0 → ϕK0 and B0 → ϕK0.

(h) Use these diagrams to obtain the term
ĀϕK0

AϕK0
of Eq. (7), at O(λ4) as a function of one

of the CKM angles. Justify.

(i) Finally, obtain the expressions of λCP , S and C.

(j) Which CKM angles are measured by studying the time-dependent CP asymmetry in
B0 → ϕK0

S decays? Explain.

(k) This mode is known to provide a clean measurement of the CKM angle β. Comment
on this statement, also in light of your answer to the last question.

(l) The time-dependent CP asymmetry may be used to probe the existence of particles
and interactions beyond the standard model (new physics). Explain qualitatively why
and how.
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Appendix

QED Feynman rules and couplings of the Z and Higgs bosons. s denotes the (anti-)fermion

spin and λ the photon helicities. PX are the chirality projectors (PL = 1−γ5

2
, PR = 1+γ5

2
).
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Useful relations regarding the γ matrices, spinors and the Dirac equation

{γµ, γν} = 2gµν

γ5 = iγ0γ1γ2γ3

{γµ, γ5} = 0

p/ = γµpµ

ū = u†γ0

(p/−m)u = 0

ū(p/−m) = 0

The Wolfenstein parameterisation of the CKM matrix at orders λ3 and λ5

VCKM =

 |Vud| |Vus| |Vub|e−iγ

−|Vcd| |Vcs| |Vcb|
|Vtd|e−iβ −|Vts|eiβs |Vtb|

+O(λ5)
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