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Corrections final exam of Particle Physics

Exercise I
Short questions on the lectures and general understanding

1. Explain the role of the BEH mechanism in the Standard Model: why is it introduced (the
issues to solve and the way they are solved)? Do we have any experimental proof that this
mathematical conception is actually realised?

The BEH mechanism is named after Brout Englert Higgs. It was introduced in the SM by
Weinberg to solve two different issues:

• In order have a gauge theory of the EWK interaction, the lagrangian needs be invariant
under the SU(2)L global symmetry which is impossible for massive fermions (the mass
term of a particle mixes the chirality: mψψ = mψLψR +mψRψL). This issue is solved
by introducing Yukawa couplings between fermions and the Higgs field.

• Promoting SU(2)L as a gauge symmetry implies that EWK gauge bosons should be
massless in contradiction the experimental evidence that EWK interaction was short
distance. This is solved by the BEH mechanism (and the ”BEH potential”).

To solve both this issues, the EWK symmetry SU(2)LU(1)Y needs to be broken. After the
break, we have massive gauge bosons, massive fermions and the remaining gauge symmetry
is U(1)EM . This mechanism introduces a new particle which is called the Higgs boson. The
Higgs boson was discovered at the LHC in 2012 and is the experimental evidence that this
is indeed the BEH mechanism which is at play to break the EWK symmetry.

2. Using the relations in the appendix, show that the spinor u transforms by the parity operator
into u′ = γ0u, and that ū′ = u†. Explain.

We can explicitly write the Dirac equation in terms of the energy and the momentum of the
particle, multiply it on the left by γ0, and move it to the left of the spinor u, according to
the anti-commutation rule.

(γ0E − γ1px − γ2py − γ3pz −m)u = 0

((γ0)2E − γ0γ1px − γ0γ2py − γ0γ3pz − γ0m)u = 0

(γ0E + γ1px + γ2py + γ3pz −m)γ0u = 0 .

We obtained the parity-transformed Dirac equation, (p/′−m)u′ = 0 (still valid as it involves
only kinematics), where p/′ is obtained from the parity-transformed energy momentum 4-
vector p′µ ⇔ (E,−p⃗). We then conclude

u′ = γ0u .

Following the definition of ū

ū′ = u′†γ0 = (γ0u)†γ0 = u†γ0γ0 = u† .

3. In the context of QCD and hadron collisions, define and explain what is an infrared-safe
observable. Give an example and a counter-example of such an observable, along with a
short explanation.
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In QCD, the cross-section of soft and colinear gluon is divergent (A soft particle is a particle
with small momentum). An infrared-safe observable, depending on several objects (tracks
and neutral particles) in a detector, is, by definition, not altered if two colinear objects are
grouped, or if a soft particle is absorbed into another particle. In other words, for a physical
event, infrared safety means that the actual event gives approximately the same result as
when the hadrons in a jet are combined to make a few parton jets. This may also be written,
for an observable On depending on n objects, where xj is either soft, or colinear with xi, as:

On(x1, x2, · · · , xi, xj, · · · , xn) = On−1(x1, x2, · · · , xi + xj, · · · , xn) .

Such observables may be computed in a reliable way using perturbative-QCD methods, as
infrared infinities cancel. Examples and counter-examples that we mentioned in the course
are inclusive and non-inclusive cross-sections (e.g. the cross-section of hadron production
in e+e− collision is inclusive). We also gave the example of jets. A jet which is naively
defined by all the hadrons included in a cone around some thrust axis is not infrared-safe.
On the contrary, there exist several iterative infrared-safe jet algorithms that cluster objects
following some criteria until a condition is met. We gave examples of the top-down cone
algorithm with seed, the inclusive kT algorithm, and the Anti-kT algorithm

4. An observable that drew much attention from particle physicists recently is the ratio

RK =
Γ(B+ → K+µ+µ−)

Γ(B+ → K+e+e−)
,

measured in intervals of the invariant mass of the dilepton (µ+µ− or e+e−) system. What is
the approximate expected value for this observable in the standard model? Use qualitative
arguments to explain your answer. Why is this observable interesting to measure?

The standard-model Feynman diagrams for these two modes (electroweak penguin or box
topologies) are identical apart from the lepton flavour. The CKM matrix elements at play
are the same as in both modes, as the two transitions are b → s, with a dominant virtual
top quark. The couplings of the Z and W bosons to the three lepton families are the same
(lepton universality). The matrix elements of the two modes are thus very similar, with only
a small difference due to the lepton masses. Phase space is also affected by these masses. In
both modes, they are expected to have a small influence on the amplitude, because of the
large mass of the B+ meson and available phase space. The standard-model prediction for
the ratio RK is thus very close to 1, up to small and well-understood corrections. The ratio
is interesting to measure because if the result significantly differs from unity, this means
that new physics (new particles and interactions), which unlike the standard model does
not have the feature of lepton universality, could be at play. It is, in general, better to
compare the theoretical predictions and experimental measurements of ratios rather than
those of absolute rates. From the theoretical point of view, in the ratio, some ill-known
ingredients (e.g. QCD corrections) may simplify, and from the experimental point of view,
some systematic effects affect in the same way the numerator and the denominator and
therefore have less influence.
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Exercise II
Z production at e+e− colliders

1. Z boson partial width

(a) If
R
3 = 0 for all type of fermions. Qf is the electric charge and I3

L
f the isospni: +1

2
for

ν, c; −1
2
for µ, b

(b) Cf course. Note that the Z boson in this case is an external particle and it is associated
to ϵµ. The matrix element is therefore:

iM(Z → ff̄)X = gfXϵµū(p)γ
muPXv(p

′) = gfXAX (1)

(c) In the SM; Γ(Z → fRf̄R) = Γ(Z → fLf̄L) = 0 because the Z boson couples only L-
fermion and R-antifermion (as well as R-fermion and L-antifermion) due to its vectorial
nature.

(d) In the case of a Z-boson decay, all the fermions can be considered massless. Therefore
the momentum of f in the center of mass of the Z boson is given by p∗f = mZ/2. In
addition we need to average over the helicities of the Z boson, hence there is a factor
1/3 in front of the matrix element. For each chirality, the partial width is given by:

dΓX

dΩ
= N f

c

p∗f
32π2m2

Z

|gfX |
2 × 1

3
× |AX |2

= N f
c

1

3

1

64π2mZ

|gfX |
2 × 2 m2

Z

= N f
c

1

3

mZ

32π2

e2

c2ws
2
w

× (If
X
3 −Qfs

2
w)

2

= N f
c

1

3

mZ

8π

α

c2ws
2
w

× (If
X
3 −Qfs

2
w)

2

(2)

Integrating over Ω:

Γf
X = N f

c

mz

6

α

c2ws
2
w

× (If
X
3 −Qfs

2
w)

2, (3)

with N f
c the number of colors for fermion f (3 for quarks and zero for leptons).

(e) For neutrinos, we therefore obtain:

Γ(Z → νeν̄e) = Γνe
L =

mz

6

α

c2ws
2
w

×
(
1

2

)2

Γ(Z → νeν̄e) = 167.6 MeV. This is the same value for the other neutrino family.
Γ(Z → invisible) represents to total width to not detectable particles, in the SM this
only neutrinos, therefore in the SM: Γ(Z → invisible) = 3Γ(Z → νeν̄2) = 502.3 MeV in
good agreement with the experimental value given in the PDG.

(f) The LR asymmetry is defined by:

Af =
Γf
L − Γf

R

Γf
L + Γf

R

=
(gfL)

2 − (gR)
2

(gfL)
2 + (gR)2

=

(
If3 −Qfs

2
w

)2
−Q2

fs
4
w(

If3 −Qfs2w

)2
+Q2

fs
4
w

(4)
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(g) For the electron If3 = −1/2 and Qe = −1,

Ae = 0.159

2. Z boson production

(a) The matrix element corresponding to the Z production is given by:

iMXY = geX g
f
Y v̄(ke+)γ

µPXu(k
−
e )

iηµν
q2 −m2

Z + iΓZmZ

ū(pf )γ
νPY v(pf̄ ) (5)

(b) The electron and positron masses, as well as any fermion f from the Z decay can
be considered massless w/r to the Z-boson mass. Therefore we can consider that the
helicity is identical to the chirality. This means that left-particle have helicity −1/2.
Similarly right particles have helicity=+1/2.

(c) In this case, the positron beam has a random polarisation so we need to average over
the 2 e+ helicities. Therefore

dσf
L =

1

2

(
dσf

LL + dσf
LR

)
dσf

R =
1

2

(
dσf

RR + dσf
RL

) (6)

(d) In order to measure σf
R, we need all electrons to be right, so they all have an helicity

+1/2, this can be obtained with Pe = +1. Similarly σf
L can be measured with Pe = −1.

(e) When integrating Eq. 6 over d cos θ, we obtain:

σf =
3

8
σ0
f

{∫ 1

−1

(1 + cos2 θ)d cos θ(1 + PeAe)

∫ 1

−1

(cos θ)d cos θ(Ae − Pe)Af

}
= σ0

f (1 + PeAe)

(7)

which is independent of Af . Therefore Af can not be accessed via the total cross-section.

(f) In order to assess Af we need the term in cos θ to no vanish. So it can be measured
by integrating for cos θ > 0 (Forward cross section) and for cos θ < 0 (Backward cross
section) and then comparing the two. This methodology was used at LEP to measure,
it is called the Forward-Backward asymmetry. One can also think of measuring the
cross section as a function cos θ and fitting the observed distribution.

(g) σ+
tot =

∑
f σ

+
f , with σf the cross section for fermion f measured with a polarization

Pe = +Pe. Therefore:

σ±
tot =

(∑
f

σ0
f

)
× (1 +±PeAe) (8)

(h) Therefore we can compute the asymmetry A+− ≡ σ+
tot−σ−

tot

σ+
tot+σ−

tot

.

A+− ≡ σ+
tot − σ−

tot

σ+
tot + σ−

tot

= |Pe| Ae (9)

Note that this measurement requires a non null polarization (the larger the polarization,
the better).

(i) σ±
tot are directly proportional to the number of Z boson collected in each polarisation.

Thus, we obtain:

Ae =
1

0.715

291775− 234748

291775 + 234748
= 0.151
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(j) The LEP collider was had a 36 times larger sample, yet to measure Ae, it had to use the
process e+e− → Z∗ → e+e− while SLC was able to use the total cross section (without
looking for a distinct final state). Therefore the LEP measurement total sample for
this measurement was only 36 × B(Z → e+e−) larger. Since B(Z → e+e−) = 3.3 %,
thus the number of Z bosons available for this measurement was about the same for
the 2 colliders.
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