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M2 NPAC – Particle physics (2023-2024) 

 

 

Exercise sheet № 7 - Weak interaction - basics 
Brief correction 

 

Exercise 1 
a) [] = [GeV]. G2 = [GeV-2]2 so G2E5 = [GeV]. 

b) We remind the relation between the radioactive mean lifetime and the half-life:  
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In this calculation, it is practical to use:  
23197.3 ; 3 10 / .c MeV fm c fm s= =   
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d) G ~Gn: universality of weak interaction. The naïve Fermi approximation is not perfect 

and has to be completed with the Cabibbo angle and the CKM formalism (to come). 

 
 

Exercise 2 

For these two processes, the PDG booklet gives the values of the ratios /i  , which are, 

by definition, the branching ratios.  Note that the initial particles are different and their 

total widths must be taken into account (for each of them, / = ). This gives:  
0

0 0

( ) ( ) ( )

( ) ( ) ( )

D e X D BR D e X

D e X D BR D e X





+ + + +

+ + +

 → →
=

 → →
 

With the values of mean lifetimes and branching ratios given in the PDG booklet we find: 
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This result is due to the fact that the phase space factor is approximately the same in 
these two processes and that the matrix element is also the same. The only difference is 

the flavor of the spectator quark. 
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Exercise 4  

a)  

 
There are no contributions with W→  and W→c s̅ because of the phase space. The 

transition c→d has a lower probability (VCKM ~  observed rate suppressed by 2). 

b) 

  

BR D0 ® m+n
m
X( ) =

G mnX( )
G

tot

     ;     tot = e + µ + 3ud  5  

The factor 3 for ud is due to the color degree of freedom. Note that, unlike in the 

case of color suppression with a single meson created from the W boson, this factor 3 

is applied to the widths and not the amplitudes. This is due to the fact that the 
hadronic state emerging from the W boson is not a single meson, and therefore, at 
first order of αs, there is no gluon exchange between these two quarks (this, of 

course, does not work in case of a single meson). Thus, in the present case, the 
diagrams with different colors are supposed to have different quantum numbers and 

do not interfere. 

 
The hypothesis of a roughly similar phase space is justified because the final state 
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particles have low masses compared to the D0.  By taking |Vud|~1 we get: 

BR(D0→+µ X) ~ 1/5 = 20%. 

The PDG booklet gives BR = 6.5%. Our estimation has a discrepancy of a factor ~3. 
Probably this factor is due to other major contributions to the tot. In general, another 

source of discrepancy comes from QCD corrections (the quarks are not free, but 

bound inside hadrons). 
c) In the case of B0, we obtain the result:  
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PDG booklet: 10.33%. The estimation is much better. 

d)  

 
Only 1 diagram contributes to the µ decay, whereas there are 9 dominant ones for 
the b-quark. The nature of the interaction is the same in the two cases. With the 

Fermi approximation and by taking |Vud|~| Vcs |~1 we find: 
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The difference, probably, comes mainly from QCD corrections. 
e) In the B0 case, there is a Vcb factor (~²), whereas for the D0 it is Vcs (~1). Without 

this effect, the B0 lifetime would be shorter than the D0 one (mB>>mD, 9 possible 

dominant modes instead of 5). 
 

 

Exercise 5 
We look for semileptonic decay processes of the type: 

 
 

 

 
 

 

 
Below are 4 examples (the last one corresponds to the diagram above). We do not 

precise the decays of the W boson. The factor in the decay amplitude that comes from 
the CKM matrix elements is denoted ACKM. 

No. Process ACKM 

1 t→ W s ; s→ W u VtsVus~²  =3 

2 t→ W b ; b→ W u VtbVub~1  3=3 

3 t→ W d ; d→ W u VtdVud~3  1=3 

4 t→ W s ; s→ W c ; c→ W d ;d→ W u VtsVcs VcdVud ~2  1    1=3 

The fourth process, even though it is equivalent to the others with respect to the CKM-
matrix-elements contribution, is highly suppressed. It has twice as much weak vertices 

as the first three processes (i.e. it has an additional factor of G² in the decay amplitude). 
The dominant processes are therefore 1, 2 and 3, which give, as far as we can tell from 

these simple arguments, equivalent contributions to the decay width. 

Comment: we are looking for a rough estimation here, and therefore we do not take into 
account the parameters A,  and  of the Wolfenstein parameterization. 
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Exercise 6 
a) If the W was a 0-spin particle, the problem would be identical to the pion decay from 

the angular-momentum point of view. The decay → is favored with respect to the 

decay to →e, because the electron, unlike the muon, is ultrarelativistic. For a 0-spin 

W, in principle we would have the same phenomenon, but it would become more than 
secondary due to the very-high mass of the W. 

 

 
 

b)  

 

c) Due to the weak-interaction coupling ( )− 51

2




 , and in the limit mq=0, the quarks 

(antiquarks) are left-handed (right-handed). The anti-neutrino is always right-
handed, and therefore the electron must be left-handed. We deduce that only one 

helicity configuration exists (single non-zero helicity amplitude). 

d) The spin of the W is 1. The angular distribution is therefore given by: 
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e) If the W was a spin-2 we would have:  
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One can easily see which the right hypothesis is simply by looking at the angular 

distribution of the decay products. 
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Exercise 7 

a) Because of the nature of electromagnetic interaction (vector coupling), the outgoing 
+ and -, as well as the incoming e+ and e- are of opposite chiralities. In high-energy 

regime (E>>m), helicity=chirality. From this, it is easy to see that the initial state of 
the reaction can be either Sz = +1 or -1, and the final state either Sz’ = +1 ou -1. 

b)  
 

 
The z- and z’-axes are oriented in the directions of the incoming e- and the outgoing 
-, respectively.  

c) The schemes above are drown for a given   The −dependence of each one of them 

is given by the corresponding 
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Where Am,m’ are the (angle-independent) helicity amplitudes. Notice that for =, Sz is 

not conserved in configurations (1) and (2). Indeed, the matrices 
, '

J

m md  ensure a 0-

amplitude in this case. 

d) To compare to the figure, we need to compute the total differential cross-section, i.e. 
the sum of squares of the 4 amplitudes above. Knowing that the four helicity 

amplitudes are the same (the total cross sections corresponding to the 4 helicity 

configurations are the same): 
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This clearly describes the behavior shown in Figure 1. 
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Exercise 8 
a) + p →+ p 

We note by (+) the states =+1/2 and by (-) the states =-1/2. The  is spin-0, and 

therefore =0. In the center-of-mass frame: 

 
 

The configurations corresponding to T+- and T++ can be obtained from the ones 
corresponding to T-+ et T--, respectively, by two consecutive operations: 

1. Parity (P), which flips the directions of momenta with no effect on the angular 
momenta (resulting in inversed helicities); 

2. Rotation of 180° about an axis perpendicular to the plane of the sheet. This 

transformation does not affect the helicities that are invariant under rotation 
([h,J]=0). 

Below we present an illustration of the action of these two operations on the protons 

of T-+ (the transformations are trivial for the pions). 

 
As the reactions occur by strong interaction, which is invariant both under rotation 

and parity, we obtain only 2 independent helicity amplitudes.  
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Using the hypothesis 
++ +−

=  1/2

J J Jf f f  we finally obtain: 
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c) If J = ½ : 
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If J =3/2 : 
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Comparing the expressions to Figure 2 we conclude that the spin of the  is 3/2. 

 

d)  

 
 We confirm that the graph corresponding to ++ describes a resonance of spin 3/2. 


	M2 NPAC – Particle physics (2023-2024)
	Brief correction


