
M2 NPAC Academic year 2023-2024

Correction to exercises I + II of the
2024 midterm exam of Particle Physics

Exercise I
Questions on the lectures

Give short and succinct answers to the questions below. The best possible answer is the shortest
one that details comprehensively all the relevant arguments.

1. Briefly describe the historical context of the proposal of the quark model, along with relevant
dates. Explain the logic on which the proposal was based.

Answer In the 1950s, novel experimental developments, mainly bubble chambers and parti-
cle accelerators, led to the discovery of many hadrons, without a convenient theory that was
able to explain their properties. In 1961, Murray Gell-Mann and Yuval Ne’eman proposed a
classification of these particles, that appeared as multiplets in the I3, Y (isospin projection,
hypercharge) plane. The structures were identified as multiplets of the SU(3) symmetry:
two meson octets, one baryon octet, and 1 baryon decuplet, where particles in the same
multiples have the same JP quantum numbers. These structures indicated that hadrons are
constituted of three underlying objects, called quarks (up, down and strange). Construct-
ing numerous hadrons as bound states of fewer constituents helped to organize them, and
is understood to be a consequence of the flavour-symmetry structure of the three lightest
quarks.

2. What is the relation between the intrinsic width and the lifetime of a particle? What is the
reason for this relation? Remind and explain the definition of the partial width and the logic
behind it.

Answer Any unstable particle with a lifetime of τ has an intrinsic width of Γ = 󰄁/τ (in
natural units). This relation is related to the uncertainty principle: given that the lifetime,
which is distributed exponentially, has an uncertainty of τ , also the intrinsic energy of the
particle, its mass, must have an uncertainty, noted Γ, with τΓ = 󰄁. Furthermore, the Fourier
transform of the exponential distribution of lifetime yields a Breit–Wigner distribution of
the mass, with an FWHM of Γ. The partial width of the particle X decaying to the final
state f is defined as ΓX→f = BFX→fΓX . The total width is ΓX proportional to the total
probability of the particle X to decay (a short lifetime and thus a large width are related
to a large probability). Multiplying ΓX by the branching fraction BFX→f (the fraction of X
undergoing the X → f decay, is thus clearly related to the probability of this specific decay.

3. Explain the evolution of the fine structure constant α with energy involved in the reaction.

Answer The fine structure constant relates to the electric charge as α = e2/(4π). We
consider that the fine structure constant depends on the energy involved in the reaction
because of quantum corrections to the vacuum polarisation, which are corrections to the
photon propagator (loop diagrams, a diagram was appreciated). These corrections relates
to virtual e+e− pair creation. The fine structure constant increases with energy from 1/137
at very low energy to 1/128 at the Z boson mass (this last number was not required).
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Exercise II
Production of axion-like particles (ALPs)

The different parts of this exercise are mostly independent.

We consider, at the LHC, the production of the Higgs boson (h) and its decay to a pair of ALP
particles (a) which are pseudo-scalar particles. Each of the a particles subsequently decays to a
pair of photons (a → γγ). Therefore, we study the process pp → h+X ; h → aa → (γγ)(γγ).
Here X represents other particles produced along with the Higgs boson. We will not consider
them in the following.

1. Particles production vs rapidity
At a hadron collider, one can show that the number of particles produced per unit of rapidity,
y, is mostly constant for a large range of rapidities. This phenomenon, known as the rapidity
plateau, means that dN

dydϕ
= cst, with ϕ the azimuthal angle in spherical coordinates.

We consider massless particles and we remind you that the definition of the pseudo-rapidity

η ≡ − ln tan θ
2
where θ is the polar angle in the spherical coordinate system.

(a) Express cosh η and sinh η as a function of θ

cosh η =
eη + e−η

2
=

1

2

󰀕
1

tan θ/2
+ tan θ/2

󰀖

=
cos2 θ/2 + sin2 θ/2

2 cos θ/2 sin θ/2

cosh η =
1

sin θ

(1)

sinh η =
eη − e−η

2
=

1

2

󰀕
1

tan θ/2
− tan θ/2

󰀖

=
cos2 θ/2− sin2 θ/2

2 cos θ/2 sin θ/2

sinh η = tan−1 θ

(2)

(b) We consider the pseudo-rapidity difference δη ≡ η′ − η where η′ corresponds to the
polar angle θ′ ≡ θ+ δθ, and we assume δθ ≪ 1. Compute δη as a function of δθ to first
order in δθ.

δη = η′ − η = − ln
tan θ+δθ

2

tan θ
2

(3)

Let’s first concentrate on developing to order one tan(α + δα) with δα ≪ 1.

tanα + δα =
cosα sin δα + sinα cos δα

cosα cos δα− sinα sin δα

=
sinα + cosαδα

cosα− δα sinα

=
sinα

cosα

1 + tan−1 α δα

1− tanα δα

≈ tanα
󰀃
1 + tan−1 α δα

󰀄
()× (1 + tanα δα) ()

≈ tanα
󰀃
1 + δα(tan−1 α + tanα)

󰀄

≈ tanα

󰀕
1 +

2 δα

sin 2α

󰀖

(4)

2



Taking α = θ/2, we get that Eq. 3 simplifies to

δη ≈ − ln

󰀕
1 +

δθ

sin θ

󰀖

δη ≈ − 1

sin θ
δθ

(5)

(c) The differential solid angle is thus approximately:

δΩ = sin θ δθ δϕ

δΩ ≈ − sin2 θδη δϕ

δΩ = − 1

cosh2 η
δη δϕ

(6)

(d) As a consequence:

δN

δΩ
≈ − cosh2 η

δN

δηδϕ
δN

δΩ
≈ cst× cosh2 η

(7)

Therefore the production rate is not constant vs η and increase exponentially at high η.
The sketch would be a plot of y(x) = cst× x2.

(e) By definition of a solid angle when gets that the differential surface is δS/R2 = δΩ
with R the radius of the sphere. In this case δΩch = 2.5× 2.5/2002 = 1.6 10−4

(f) Since the detector is spherical we conclude that

δN

δS
≈ cst′ × cosh2 η.

Thus the amount of particle collected by a single channel is exponentially growing with
η. So the dose integrated over a single channel explodes with η. This has several
consequences:

• Deterioration of detector is not isotropic but very large at high η while modest for
lower η (central parts of the detectors).

• The occupancy also increases with η, i.e. that chances to get several particles from
the pileup collisions in addition to an interesting particles are very high.

2. Kinematics of h → aa → 4γ decay
We consider that the Higgs boson is produced at rest at the centre of the detector.

(a) Since the Higgs boson is emitted at rest the 2 ALPs have the same momentum |󰂓pa|
(with opposite direction), thus they have the same energy Ea. We thus get that

Ea =
mh

2

|󰂓pa| =
󰁳

E2
a −m2

a =
mh

2
×

󰁶

1− 4m2
a

m2
h

(8)

(b) Noting pγi the 4-momentum of the photon i, we get:

m2
a = (pγ1 + pγ2)

2 = (pγ1)
2 + (pγ2)

2 + 2pγ1.pγ2

m2
a = 2Eγ1 Eγ2 (1− cos∆θγγ)

(9)
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(c) See the course, we have

Ea = γama

|󰂓pa| = γaβama

(10)

Thus

γa =
mh

2ma

βa =
|󰂓pa|
Ea

=

󰁶

1− 4m2
a

m2
h

(11)

(d) Assume Eγ1 = Eγ2 ≡ Eγ, the conservation of energy gives 2Eγ = Ea from which we
get:

Eγ =
mh

4

(e) We assume ma ≪ mh. Because m2
a = 2E2

γ (1− cos∆θγγ), (1− cos∆θγγ) =
16m2

a

2m2
h
≪ 1.

This implies that ∆θγγ ≈ 0. Developing to order 1 in ∆θγγ, we get:

1− cos∆θγγ ≈ (∆θγγ)
2/2

(∆θγγ)
2 ≈ 16m2

a

m2
h

∆θγγ ≈ 4ma

mh

(12)

(f) Assuming ma = 0.1 GeV, what is the value of

∆θγγ ≈ 4 0.1

125
≈ 0.003 rad,

while the angular size of a channel δϕch = 2.5/200 ≈ 0.0125 rad. This means the two
photons are not distinguishable and are likely to hit the same channel.

3. Study of the decay a → γγ
The required Feynman rules are given in the appendix, α represents the fine structure con-
stant and cγγ

Λ
the dimensional coupling strength of the a particle to photons. For numerical

applications, we will use cγγ
Λ

= 1 TeV−1.

We note the 4-momenta: pa for a, k1 and k2 for the 2 photons.

(a) The matrix element is given by:

iM = 4 iα
cγγ
Λ

󰂃µναβk1αk2β 󰂃∗(k1) 󰂃
∗(k2)

(b) The matrix element is Lorentz invariant and can be therefore be computed in any frame.
We can also use the fact that: m2

a = (k1 + k2)
2 = k2

1 + k2
2 + 2 k1.k2 = 2 k1.k2, because

photons are massless so k2
1 = k2

2 = 0. Thus, we have that k1.k2 = m2
a/2 and the matrix

element is given by:

|Maγγ|2 = 4m4
a |4παcγγ

Λ
|2

.

(c) See the course.

4



(d) Using the previous questions we can compute the partial width to γγ (in the centre of
mass k∗ = ma/2):

dΓ

dΩ
= m3

a|α
cγγ
Λ

|2

Γγγ = 4πα2 |cγγ|2
m3

a

Λ2

(13)

(e) Since the lifetime of the particle in the lab. is increased by a factor γa (Lorentz time
dilatation), the typical distance travelled by a is given by (τa is the a particle lifetime
so τa = 1/Γa)

La = γa βa τa

La = γa βa
1

Γa

(14)

(f) The length of the detector is Ldet = 2 m. What is the numerical value of Ldet in GeV−1

unit? To transform length in energy, we use 󰄁c = 200MeV.fm

Ldet =
2 1015 fm

0.2 GeV.fm
= 1016 GeV−1

(g) In order to detect the particle decay products, the particle needs to decay inside the
volume of the detector so

La < Ldet.

(h) Because the ALP solely decays to photons Γa = Γγγ.

La < Ldet

γa βa < Ldet Γγγ

mh

2 ma

< Ldet8πα
2 |cγγ|2

m3
a

Λ2

m4
a > mh

Λ2

|cγγ|2
1

Ldet

1

8πα2

m4
a > (0.125 TeV) (1 TeV2)(10−19 TeV)

1

8π(1/137)2

m4
a > 93 10−19 TeV4

m4
a > 0.093 10−16 TeV4

ma > (0.093)0.25 10−4 TeV

ma > 0.55 0.1 GeV

ma > 55 MeV

(15)

So in order for the particle to decay inside the volume of the detector its mass must be
ma > 55 MeV.
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