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Helicity: reminder  
 

The helicity is defined as  

 

It is important to note that, if     is the orbital angular momentum and                , we have  

 

 

The eigenvalues of H are  

Given that H is a scalar (dot) product, the helicity is invariant under rotation.  
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Angular distributions and helicity formalism 

The helicity formalism is used to obtain angular distributions of final-state particles in 
processes of collision (interaction) and decay.  

Here, we aim to obtain the term |dJ
λi λf (θ)|2

  in the expressions of σ et Γ. 

We will use as an illustrative example the simple case Λ→pπ.  
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Rotation of an angular-momentum state – the d j
m, m’(θ)  functions 

 

We take the quantification-axis z  in the plane of the page, and the perpendicular axis, pointing 
upwards, as y. A rotation by an angle θ about the y-axis is obtained by the operator   
 

An angular-momentum eigenstate, | j, m >, transformed by such a rotation is a linear 
combination of states | j, m’ >, with m’ = -j, -j+1, … , j. The coefficients of this linear combination 
depend on the angle θ and on the quantum numbers j, m and m’ . We denote these coefficients as 
d j

m, m’ (θ), and thus: 
 

 

The quantum number j is unchanged, as [R, J2 ]=0 . The projection of this state on < j, m’ | is: 

 

 

The functions d  jm,m’ (θ) are therefore simply interpreted as the elements of the rotation matrix R. 

Below we will explicitly obtain these functions for j=½. In this case: 
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Using the fact that σy
2 = 1, we can write: 

 

 
 

Denoting: 

 

 

 

we finally obtain:  

 

 

 

 

 

 

The d jm, m’(θ) functions for higher angular momenta are technically more difficult to compute, but 
are obtained in a similar way. These functions are detailed, for different values of j, in the 
Clebsch-Gordan coefficients table. 
 

As we will see below, the term that appears in the expressions of the cross section and the width 
is of the form|d jm, m’(θ)|2. We note that the normalization of this term gives: 
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Definition of axes, proceeding through the helicity formalism 
For a decay (A→1+2), the z-axis is defined as the quantification axis of the angular momentum 
of the particle A. Usually this axis is chosen in the direction of movement of A in the laboratory 
frame, and in this case the z-projection of the angular momentum simply coincides with the 
helicity of A. The z’–axis is defined as the axis of movement of the final state particles in the 
center of mass. 

For a collision process a+b →1+2, the z-axis is defined as the axis of movement of the initial 
state particles in the center of mass. In case of a decay A →1+2 the z-axis is usually defined in 
a similar way, as the axis of movement of the initial-state particle in the laboratory frame. The 
axis z’ is along the momentum of the final state particles in the center of mass, and the angle 
between z and z’ is denoted θ. 

In the laboratory frame: 

1

z 

2 

Α

In the center of mass frame, in case of a decay 
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Our aim is to determine the angular distribution (in θ) of the final-state particles. The procedure 
consists in first writing the state of the system for θ=0 and then rotating the obtained state by an 
angle θ, to finally find  
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z, z’ 
1 Α2 

Projection of the angular momentum on an axis 
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For a system of two particles, in the center of mass, the directions of the two momenta 
are opposite and the projection of the angular momentum on the axis defined by the 
momentum of one of the particles is simply the difference of the two helicities. 

What we show here, applies in particular to the case θ = 0. 
 
The conservation of the z-component of the total angular momentum J gives: 
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Illustration of the helicity formalism on the simple case: Λ→pπ 
 

In the laboratory: 
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Given that the π meson is a spin-0 particle: 
 

Furthermore: 
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We now proceed to find the angular distribution (in θ) of, for instance, the final-state proton. 

The probability for the proton to be scattered within the solid angle dΩ  and to have a helicity λ 
is 
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Similarly: 
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We next express |ψpπ> in the basis |J MJ> (recall that J  is the total angular momentum and MJ  

its projection on the quantification axis). We have|J MJ> = |JΛ MΛ>. Hence: 
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The probability for the proton to be scattered in the direction (θ,φ) is therefore: 
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Recapitulation – the general case 
In the general case, we can write the amplitude of a decay process (A→1+2) as 

 

 

The quantity Aλ1 λ2  is called the “helicity amplitude” and is characteristic of a specific helicity 
configuration of the final state particles. The direction of the final-state particles is given by Ω 
(θ, φ), and j is the total angular momentum of, for instance, the initial state (here, the spin of 
the particle A).  

The corresponding width is obtained by taking the square module of the amplitude. The φ  
dependence of the rotation operators D disappear, as in the simple case above: 

 

 

Integrating this expression over the solid angle yields 

 

 

where we used the normalization property of the d jλi, λf(θ) functions. This expression clarifies 
the physical meaning of the helicity amplitude Aλ1 λ2 : its square module is simply the rate of 
decay into the helicity-specific final state, given by λ1 λ2. The helicity amplitude describes all the 
physics of the problem except for the angular dependence. 
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For the interaction process  a+b→1+2, we can easily obtain a similar expression. 

We recall that, in any case: 

•  j is the total angular momentum in the process (the spin of the decaying initial-state particle 
A, or of the intermediate resonance created by a+b); 

• m is the projection of the angular momentum on the z-axis. It is the projection of the spin of A 
in the case of a decay, and λa-λb in a collision;  

• λ1-λ2  is the projection of the final-state total angular momentum on the z’-axis. 
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For further reading on the topic, refer to the articles: 

•  CALT-68-1148 "An Experimenter's Guide to the Helicity Formalism" Jeffrey D. Richman  

•  "An Angular Distribution Cookbook" Rob Kutschke  


