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Chapter 1

Special relativity

1.1 Introduction

Quantum field theory combines two of the major pillars of modern physics, special relativity and quantum
mechanics. The current chapter is dedicated to the former, and additionally includes some basics about
group theory.

Chapter 1 begins in section 1.2 with a few reminders of special relativity, assuming that readers already
have a solid understanding of it. We first introduce the notion of four-vectors and Minkowski space-time,
that is named as such after the physicist Hermann Minkowski (1864 – 1909) and the work presented in
his lecture from 1908 [1], and we then move on with the postulates of special relativity as introduced by
Albert Einstein (1879 – 1955) in 1905 [2]. This naturally leads us to the notion of Lorentz and Poincaré
transformations that leave the structure of space-time invariant, these two sets of transformations being
named after the physicists Hendrik Lorentz (1853 – 1928) and Henri Poincaré (1854 – 1912).

In section 1.3, we focus on Lorentz transformations and their properties [3, 4], and we define objects
as Lorentz scalars, vectors and tensors according to how they are modified by Lorentz transformations.
After providing some basic and brief knowledge about group theory, we demonstrate that Lorentz trans-
formations form a group, the Lorentz group, that we study in details together with the associated algebra.
The representations of this algebra naturally yield, in the context of QFT, information about the spin of
the particles.

In section 1.4, we consider coordinate transformations that do not only include a Lorentz transforma-
tion component, but also a space-time translation one. This leads us to the Poincaré group and algebra [5],
that lie at the cornerstone of modern high-energy physics. We discuss its representations, that allow for
a definition of the concept of a particle. We next determine the associated Casimir operators, that are
named after the physicist Hendrik Casimir (1909 – 2000), as the eigenvalues of such operators provide
a universal way to characterise any representation and therefore label any specific state. We further
move on with a study of the Poincaré little group transformations, that form a special set of Poincaré
transformations that preserve the four-momentum [6, 7]. Introduced by the physicist Eugene Wigner
(1902 – 1995), little groups provide a powerful tool allowing for the classification of particles and fields,
which we apply both to the massless and massive case. We demonstrate that any representation of the
Poincaré algebra (that we link to particles) is characterised by its mass, and its spin or helicity in the
massive and massless case respectively.

1.2 Definitions and relativistic kinematics

In special relativity, the description of space and time is unified into space-time coordinates so that
vectors have four components. Moreover, differently from Euclidean space, the scalar product defined in
Minkowski space is not positive definite. The standard notation therefore introduces upper and lower
indices for vectors and tensors and a metric tensor giving the prescription to contract them. An event E



2 d Special relativity

is represented by a contravariant four-vector in space-time (i.e. a vector with an upper Lorentz index),

xµ =


x0

x1

x2

x3

 , (1.2.1)

where x0 = ct stands for the time of the event and x = (x1, x2, x3) for its position in a given reference
frame R. In the following we adopt the system of units typical of high-energy physics in which the speed
of light c = 1. Moreover, as Planck’s constant is also set to unity (ℏ = 1), all quantities get dimensions
of mass to some power. Notation-wise, we make use of Greek letters (µ, ν, ρ, etc.) ranging from 0 to 3
for space-time indices, and Latin letters (i, j, k, etc.) ranging from 1 to 3 for position indices.

Four-vector indices can be raised and lowered by means of the Minkowski metric or Minkowski tensor,
that is given in our convention by

ηµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 and ηµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 . (1.2.2)

This sign convention (+,−,−,−) is the typical convention used in particle physics, the time component
(η00) being associated with a plus sign and the space components (η11, η22 and η33) being associated
with minus signs. Covariant four-vectors (i.e. vectors with a lower Lorentz index) and contravariant
four-vectors are thus related through

xµ = ηµνx
ν ≡


x0

−x1
−x2
−x3

 and xµ = ηµνxν . (1.2.3)

These expressions make use of Einstein summation convention in which any pair of repeated (or con-
tracted) indices is summed. For instance,

ηµνxν ≡
3∑

ν=0

ηµνxν . (1.2.4)

Moreover, we can easily show that

ηµνη
νρ = δµ

ρ ≡


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 and ηµνηνρ = δµρ ≡


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 . (1.2.5)

This demonstrates that the Minkowski tensor is its own inverse. The Minkowski tensor is also used to
define the scalar product of two four-vectors xµ = (x0,x) and yµ = (y0,y),

x · y = xµyµ = xµy
µ = ηµν x

µyν = x0y0 − x · y , (1.2.6)

as well as the (squared) norm of a four-vector,

x2 = x · x = (x0)2 − ||x||2 . (1.2.7)

The position of the repeated indices is not important, but it is important that in any pair of repeated
indices, one index is an upper index and the other is a lower index.

We can further define derivative operators with respect to space-time coordinates (the upper index in
the derivative being related to the lower index of position and vice versa),

∂µ ≡ ∂

∂xµ
=

 ∂
∂t

∇

 and ∂µ ≡ ∂

∂xµ
=

 ∂
∂t

−∇

 , (1.2.8)

as well as the d’Alembert operator □, sometimes also called the quabla operator (as a reference to the
tri-dimensional nabla operator ∇),

□ = ∂µ∂
µ = ηµν∂µ∂ν =

∂2

∂t2
−∆ . (1.2.9)
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The special theory of relativity, or special relativity, relies on two fundamental principles postulated
by Albert Einstein in his seminal article from 1905. These postulates have consequences that have
been verified in countless experiments.

□ The laws of nature and the results of experiments are identical in all inertial frames of reference.
□ The speed of light in vacuum c is universal.

We recall that an inertial frame of reference is a frame in which Newton’s first law of motion is valid.
As a consequence of the first postulate of special relativity, physical laws have the same form in any two
reference frames that are in relative motion at a constant speed. The second postulate tells us that the
value of c is independent of the motion of the luminous source, and that it is identical in all inertial
frames of reference. This last property determines the structure of space-time, that can be shown to be
a pseudo-Euclidean space (a vector space in which a vector with zero norm can be non-zero, unlike in a
Euclidean space) of dimension D = 4 equipped with a degenerate scalar product defined by (1.2.6). This
space is called Minkowski space-time.

The most general transformations that preserve the Minkowskian inner product (1.2.6) are called
Poincaré transformations, and they play a special role in high-energy physics. We consider two frames
of reference R and R′ that share a common spatial-temporal origin, and an event E that takes place at
a space-time point xµ = (x0,x) in R and x′µ = (x′0,x′) in R′. If the information between the event E
and the spatial-temporal origin of R and R′ is transmitted by a ray of light, we have

x2 = (x0)2 − ||x||2 = 0 and x′2 = (x′0)2 − ||x′||2 = 0 , (1.2.10)

as a consequence of the speed of light being the same in the two frames of reference. This suggests a
definition of a space-time interval ∆s between any two events E1 and E2, represented by the four-vectors
xµ = (x0,x) and yµ = (y0,y), as

(∆s)2 = (y0 − x0)2 − ||x− y||2 . (1.2.11)

If (∆s)2 is respectively zero, positive or negative in a given inertial frame of reference, it is zero, positive
or negative in any inertial reference frame. As this space-time interval is independent of the frame of
reference, it can be used to classify events:

□ If (∆s)2 > 0 the interval is said to be time-like. If the norm of an event is positive, it is similarly
said to be time-like.

□ If (∆s)2 < 0 the interval is space-like. If the norm of an event is negative, it is similarly said to be
space-like.

□ If (∆s)2 = 0 the interval is light-like. If the norm of an event vanishes, the event is similarly said
to be light-like.

For a given event E localised in xµ = (x0,x), the set of space-time points {Ei ≡ xµi = (x0i ,xi)} for
which (∆s)2 is zero forms a cone called a light cone. Its name originates from the fact that it consists
of the path that a flash of light emanating from E and traveling in all directions would take through
space-time. The events inside the cone are all time-like, with (∆s)2 > 0. They form the past (x0 > x0i )
and the future (x0 < x0i ) of E. On the other hand, any event Ei lying outside the light cone is inaccessible
from E, and is causally disconnected from E. The ‘distance’ between these events and E is too large so
that they cannot be connected by a ray of light. Each event thus has its own past and future, and is
associated with a set of space-time points for which there is no causal link. This shows that time is not
absolute.

For two infinitesimally-spaced events, the expression (1.2.11) can be rewritten, using a Cartesian system
of coordinates, as

ds2 = dt2 − dx2 − dy2 − dz2 = ηµνdx
µdxν . (1.2.12)

The structure of space-time stems from enforcing that the space-time interval (1.2.12) stays invariant un-
der a change of inertial reference frames from R to R′. It is equivalent to enforcing that the Minkowskian
scalar product (1.2.6) is invariant under such a change of frame of reference. In order to determine the
most general set of transformations that preserve ds2, we start from the most general transformation of
coordinates,

xµ → x′µ =
∂x′µ

∂xν
xν . (1.2.13)
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As ds2 must stay invariant under such a transformation (1.2.13), we have

ds2 = dxµdxνηµν = dx′αdx′βηαβ =
∂x′α

∂xµ
∂x′β

∂xν
dxµdxνηαβ . (1.2.14)

This property must be satisfied regardless of dx so that we get

∂x′α

∂xµ
∂x′β

∂xν
ηαβ = ηµν . (1.2.15)

We have demonstrated that the most general transformations preserving the Minkowskian metric
and the scalar product (1.2.6) are linear in the coordinates. Any such transformation can thus
generically be written as

xµ → x′µ = Λµνx
ν + aµ , (1.2.16)

where the 4× 4 matrix Λ and four-vector a are the transformation parameters.

In section 1.3, we focus on the first term of (1.2.16) and show that the set of acceptable matrices Λ
forms a group known as the Lorentz group O(1, 3). In section 1.4, we include the second term relevant
for space-time translations of a four-vector aµ, and discuss the resulting Poincaré group ISO(1, 3). The
representations of these two groups are heavily used in high-energy physics and allow in particular for a
definition of the concept of particles.

1.3 Lorentz transformations

1.3.1 The Lorentz group
We call Lorentz transformations the set of linear change of coordinates,

xµ → x′µ = Λµνx
ν , (1.3.1)

such that the scalar product (1.2.6) is preserved, with Λ being a real 4×4 matrix. As already mentioned,
this equivalently means that the transformation matrix Λ is such that x·y = x′ ·y′ for any two four-vectors
xµ and yµ. This property in particular implies that the squared norm x2 of any four-vector is invariant
under Lorentz transformations,

x′2 = x′µ ηµν x
′ν =

(
Λµρ x

ρ
)
ηµν

(
Λνσ x

σ
)
= ηρσ x

ρxσ , (1.3.2)

after applying (1.3.1) twice. Therefore, any coordinate transformation which satisfies

ηρσ = Λµρ ηµν Λ
ν
σ (1.3.3)

is a Lorentz transformation. In order to have compact formulas we can alternatively use a matrix notation
defined by

G ≡ ηµν and Λ ≡ Λµν . (1.3.4)

Within this notation Λνµηνα ≡ ΛtG and G = G−1, using the explicit form of the metric tensor (1.2.2)
and the fact that it is its own inverse as shown in (1.2.5). A Lorentz transformation is then a coordinate
transformation

x→ x′ = Λx , (1.3.5)

in which the matrix Λ satisfies the condition (1.3.3) that now reads

G = ΛtGΛ . (1.3.6)

Moreover, we have
Gx′ = GΛx =

(
Λt
)−1

Gx and x2 = xTGx , (1.3.7)

after making use of (1.3.6) and (1.3.2) respectively.

The set of Λ matrices forms a group, once we equip it with the usual matrix product as a binary
operation (i.e. the operation that defines how to determine the ‘product’ of two elements of the set).
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□ Closure – For any two elements of the set Λ1 and Λ2, the matrix Λ1Λ2 belongs to the set. The
condition (1.3.6) is indeed realised for the matrix Λ1Λ2 if it is individually realised for the matrices
Λ1 and Λ2,

Λt2Λ
t
1GΛ1Λ2 = Λt2GΛ2 = G . (1.3.8)

□ Associativity – For any three elements of the set Λ1, Λ2 and Λ3, we have (Λ1Λ2)Λ3 = Λ1(Λ2Λ3) as
matrix multiplication is associative.

□ Identity – There exists an element I in the set that satisfies IΛ = ΛI = Λ for any element Λ of the
set. It consists of the identity matrix Iµν = δµν .

□ Inverse – For any element Λ of the set, there exists an element Λ−1 such that ΛΛ−1 = Λ−1Λ = I
(see exercise 1.1 for a proof).

The set of matrices Λ preserving the Minkowskian scalar product forms the indefinite orthogonal
group O(1, 3), that is also known as the Lorentz group. These matrices satisfy

G = Λt G Λ ⇔ ηµν = Λρµ ηρσ Λσν . (1.3.9)

This leads to
detΛ = ±1 and

∣∣Λ0
0

∣∣ ≥ 1 , (1.3.10)

as well as to the fact that Λ has an inverse matrix Λ−1 defined by

(Λ−1)µν = Λν
µ . (1.3.11)

By definition, an indefinite orthogonal group O(p, q) is a group formed by linear transformations of
a D-dimensional real vector space. These transformations additionally leave a non-degenerate, symmet-
ric bilinear form of signature (p, q) with D = p + q invariant. The metric (1.2.2) having a signature
(+,−,−,−), the Lorentz group corresponds to O(1, 3).

Exercise 1.1. We consider a Lorentz transformation of parameter Λ defined by xµ → x′µ = Λµνx
ν .

1. Demonstrate that the matrix Λ satisfies

ηµν = Λρµ ηρσ Λσν , detΛ = ±1 and
∣∣Λ0

0

∣∣ ≥ 1 .

2. Demonstrate that any matrix Λ has an inverse Λ−1 defined by (Λ−1)µν = Λν
µ.

3. Conclude and show that the set of matrices Λ forms a group.

The sign of the determinant of the transformation matrix Λ allows for a classification of all Lorentz
transformations as proper Lorentz transformations (with detΛ = 1) and improper Lorentz transforma-
tions (with detΛ = −1). In particular, space inversion P (or parity) is a special class of improper Lorentz
transformations, with a transformation matrix Pµν given by

Pµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 . (1.3.12)

Under the action of parity, any specific four-vector xµ is transformed as

xµ =


x0

x1

x2

x3

→ x′µ = Pµν x
ν =


x0

−x1
−x2
−x3

 . (1.3.13)

Space inversion further allows any improper Lorentz transformation to be made proper as the product
of two improper transformations is proper. If a given transformation Λ is improper, then P ·Λ is indeed
proper.
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On the other hand, the sign of the Λ0
0 parameter allows for a classification of all Lorentz transforma-

tions as orthochronous Lorentz transformations (Λ0
0 ≥ 1 so that the direction of time is conserved) and

non-orthochronous Lorentz transformations (Λ0
0 ≤ −1 so that the direction of time is reversed). Time re-

versal T consists of a particular non-orthochronous Lorentz transformation, with a transformation matrix
Tµν given by

Tµν =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 . (1.3.14)

Under the action of time reversal, any specific four-vector xµ is transformed as

xµ =


x0

x1

x2

x3

→ x′µ = Tµν x
ν =


−x0
x1

x2

x3

 . (1.3.15)

It further allows any non-orthochronous Lorentz transformation to be transformed to an orthochronous
transformation, as if Λ is non-orthochronous, then T · Λ is orthochronous.

The set of proper and orthochronous Lorentz transformations forms a subgroup of O(1, 3) denoted
by SO0(1, 3), often equivalently written as SO+(1, 3) and called the restricted Lorentz group. It is the
identity component of the Lorentz group, and therefore includes all Lorentz transformations that can be
connected to the identity by a continuous curve lying in the group. Any product of T , P and SO0(1, 3)
transformations is therefore equal to a transformation that is part of the whole Lorentz group. Conversely,
it turns out that the set of these products actually saturates the Lorentz group, which can be symbolically
written as

Lorentz group = SO0(1, 3) transformations + T + P .

However, whereas any SO0(1, 3) transformation can be continuously connected to the identity I, space
inversion P and time-reversal T cannot (their determinant is different from 1). Those two discrete
symmetries nevertheless play a special role in QFT, even though they cannot be written in terms of
proper and orthochronous Lorentz transformations.

The restricted Lorentz group SO0(1, 3) exhibits the structure of a real Lie group, named after the
Norwegian mathematician Sophus Lie (1842 – 1899). Lie groups consist of a special class of groups related
to continuous symmetries (like for example rotations or Lorentz transformations) that contain an infinite
number of elements that can be derived from a finite-dimensional set of generators. Lie groups are an
incontrovertible part of high-energy physics, as they are critical to the understanding of the fundamental
interactions. As the restricted Lorentz group SO0(1, 3) transformations are continuously connected to
the identity, any SO0(1, 3) transformation Λ can be generically written, using matrix notation, as

Λ = exp
[
iϑλ
]
. (1.3.16)

The quantity ϑ is a real constant, the matrix λ is the generator of the SO0(1, 3) transformation considered
and the factor of i is there by convention. In fact, a rewriting, such as that in (1.3.16), is a general property
of any continuous group.

If the ϑ parameter is infinitesimally small (ϑ→ ε), we can expand (1.3.16) at O(ε2). This leads to

Λ ≃ 1 + iελ . (1.3.17)

With this in mind, the relation (1.3.6) defining a Lorentz transformation can be written as(
1 + iελt

)
G (1 + iελ) = G , (1.3.18)

which implies, to first order in ε,

λtG+Gλ = 0 ⇔ λt = −GλG . (1.3.19)

This last equation can be written with all indices made explicit as
λ00 λ10 λ20 λ30
λ01 λ11 λ21 λ31
λ02 λ12 λ22 λ32
λ03 λ13 λ23 λ33

 =


−λ00 λ01 λ02 λ03
λ10 −λ11 −λ12 −λ13
λ20 −λ21 −λ22 −λ23
λ30 −λ31 −λ32 −λ33

 . (1.3.20)
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This relation has important consequence on the form of the generators of restricted Lorentz transforma-
tions. Recalling that Latin indices i and j range from 1 to 3, this gives the following three properties:

□ All diagonal elements are zero, λ00 = λ11 = λ22 = λ33 = 0.
□ λi0 = λ0i for all values of i = 1, 2, 3. The λ matrix is thus symmetric in three of its elements.
□ λij = −λji for i ̸= j. The λ matrix is thus antisymmetric in three of its elements.

A basis for all the Lorentz transformation generators thus have six independent elements. The standard
choice for these six generators is to take all λµν parameters equal to zero, with the exception of one of
them, that is conventionally fixed to i. The reality condition of the transformation parameters ε and that
of the transformation matrix Λ, taken together with the explicit factor of i included in (1.3.16), justify
this choice. Using a standard notation (Jαβ)µν for the generator symbols (this choice of index structure
will become clear below) gives

(J01)µν = i


0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 , (J02)µν = i


0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

 , (J03)µν = i


0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

 ,

(J12)µν = i


0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

 , (J23)µν = i


0 0 0 0
0 0 0 0
0 0 0 −1
0 0 1 0

 , (J31)µν = i


0 0 0 0
0 0 0 1
0 0 0 0
0 −1 0 0

 .

(1.3.21)

Alternatively, these definitions can be written in a compact form as(
Jαβ

)µ
ν = i

(
ηαµδβν − ηβµδαν

)
. (1.3.22)

Whilst such a definition naively leads to 16 possible matrices Jαβ , only six of them are independent
by virtue of the antisymmetric property Jαβ = −Jβα. These six independent matrices are those given
in (1.3.21). The generators shown in the first line of that equation are the so-called boost generators,
while those in the second line are the rotation generators. This will be clarified in exercise 1.2.

Starting from (1.3.17), we can rewrite the most general infinitesimal SO0(1, 3) transformation as

Λ = 1 + iξiJ
0i +

i

2
ϵij

kϑkJ
ij , (1.3.23)

with ξi and ϑi being the infinitesimal parameters of the transformation. This relation involves the Levi-
Civita tensor or totally anti-symmetric tensor εijk. The elements of this tensor are defined from ε12

3 = 1,
all other elements being deduced from the rule indicating that the sign changes under the swap of any
two indices (any element with two identical indices is thus equal to zero). By exponentiation we obtain
expressions for finite Lorentz transformations,

Λ = exp
[
iξiJ

0i +
i

2
ϵij

kϑkJ
ij
]
. (1.3.24)

Any element Λ of the Lorentz group can hence be cast in the compact form

Λ = exp

[
i

2
ωαβJ

αβ

]
. (1.3.25)

This compact notation makes use of the fact that the transformation parameters ω are antisymmetric
under the exchange of their indices, ωαβ = −ωβα, whose proof is part of exercise 1.4. This property
originates from the constraint (1.3.3) (or (1.3.6) in matrix notation). Moreover, the ω parameters are
real, as we have shown.

As a consequence there are only six ω parameters to be fixed, in agreement with (1.3.23), and there
are accordingly only six relevant matrices Jαβ , that thus represent the six independent generators of
the group. This is not surprising, as any given real matrix Λµν has 16 entries that are constrained by
the 10 independent relations included in (1.3.9). We are thus left with six degrees of freedom, which is
the greatest strength of the expression (1.3.25). It is indeed completely general, and any element of the
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restricted Lorentz group can be written uniquely in this form. To this aim, it is sufficient to provide the
six real numbers ω01, ω02, ω03, ω12, ω23 and ω31.

The simplest examples of Lorentz transformations consist of rotations. For example, assuming a frame
of reference expressed in terms of Cartesian coordinates, we consider a rotation of angle θz around the
Oz axis. The associated Lorentz transformation matrix R3(θz) reads

R3(θz) =


1 0 0 0
0 cos θz − sin θz 0
0 sin θz cos θz 0
0 0 0 1

 , (1.3.26)

which obeys the property (1.3.9). This shows that the coordinates transform as

xµ =


x0

x1

x2

x3

→ x′µ =
(
R3(θz)

)µ
ν x

ν =


x0

x1 cos θz − x2 sin θz

x1 sin θz + x2 cos θz

x3

 . (1.3.27)

The expression (1.3.26) can be retrieved from (1.3.25) once we fix ω12 = −ω21 = −θz, and take all other
parameters ωαβ as vanishing. This indeed gives

R3(θz) = exp

[
− i

2
θz
(
J12 − J21

)]
= exp

[
− iθzJ

12
]
. (1.3.28)

Similarly, we can show that the two other basic rotations of angles θx and θy, around the axes Ox and
Oy respectively, are related to the generators J23 and J31.

Instead of mixing two of the spatial coordinates, we can define transformations mixing the temporal
coordinate x0 with one of the three spatial coordinates xi (with i = 1, 2, 3) of a four-vector. This
defines what we call the three Lorentz boosts in the Ox, Oy and Oz directions. Starting from the spatial
interval (1.2.12), we observe that a rotation around the Oz axis leaves the quantity dx2+dy2 unchanged.
Similarly, a Lorentz boost in the Oz direction would leave the quantity dt2−dz2 invariant. This suggests
that the corresponding Lorentz transformation matrix be written with hyperbolic functions rather than
trigonometric functions,

B3(φz) =


coshφz 0 0 sinhφz

0 1 0 0

0 0 1 0

sinhφz 0 0 coshφz

 , (1.3.29)

where the ‘angle’ φz is called the rapidity and can take any real value. Acting on a four-vector xµ, this
yields

xµ =


x0

x1

x2

x3

→ x′µ =
(
B3(φz)

)µ
ν x

ν =


x0 coshφz + x3 sinhφz

x1

x2

x0 sinhφz + x3 coshφz

 . (1.3.30)

Rapidities can be connected to the speed β = v/c (= v in our conventions with c = 1) of an inertial frame
of reference R′ in translation (at a constant speed in the Oz direction) with respect to another frame R,

tanhφz = β , (1.3.31)

such that
sinhφz = βγ and coshφz = γ , (1.3.32)

with
with γ =

1√
1− β2

. (1.3.33)

Those relations show that if an observer O observes an event of coordinates x in the frame R, then an
observer O′ would observe the same event with coordinates x′ in R′. The coordinates x′ in R′ can be



1.3 Lorentz transformations d 9

calculated from the coordinates x in R with the above formulas. We can relate the boost B3(φz) to the
generators of the Lorentz algebra J03 and J30, as in (1.3.28),

B3(φz) = exp

[
− i

2
φz
(
J03 − J30

)]
= exp

[
− iφzJ

03
]
. (1.3.34)

This time, the only non-vanishing transformation parameters appearing in (1.3.25) are ω03 = −ω30 =
−φz, as the boost considered relates the temporal and the third spatial component of a four-
vector.

Exercise 1.2. In this exercise, we study the relations between the generators Jαβ of the Lorentz
group and finite Lorentz transformations Λ.

1. Demonstrate that the Lorentz transformation Λ1 = exp
[
− iφJ03

]
is a boost of rapidity φ

along the Oz axis.

2. Demonstrate that the Lorentz transformation Λ2 = exp
[
− iθJ12

]
is a rotation of angle θ

around the Oz axis.

To summarise, any Lorentz transformation can be written in terms of the three elementary rotations
around the Ox, Oy and Oz axes, the three elementary boosts in the Ox, Oy and Oz direction, and the
discrete transformations P and T . These eight basic transformations saturate the Lorentz group O(1, 3),
whereas boosts and rotations saturate its subgroup SO0(1, 3). Symbolically, we have

Lorentz group = rotations + boosts + T + P .

Up to now, we have only investigated the action of Lorentz transformations on four-vectors. Not all
quantities, however, transform in this way. We call scalar or Lorentz-invariant quantities expressions f
that are invariant under Lorentz transformations,

f → f , (1.3.35)

and that do not depend on the choice of the frame of reference. For instance, the scalar product of two
four-vectors x · y = xµy

µ is invariant under Lorentz transformations, as for any expression in which all
Lorentz indices are contracted. In contrast, quantities with free Lorentz indices are said to be Lorentz
covariant and change with the choice of the frame of reference. Objects V µ in which one Lorentz index
is free are four-vectors or simply vectors under Lorentz transformation, and they transform as in (1.3.1),

V µ → V ′µ = ΛµνV
ν . (1.3.36)

Important examples include the space-time position xµ, the derivative operator ∂µ and the four-
momentum pµ defined, in a system of Cartesian coordinates, by

pµ =

(
E
p

)
=


E
p1
p2
p3

 , (1.3.37)

with E standing for the energy and p = (p1, p2, p3) for the usual tri-dimensional momentum (actually
cp after reinstating the appropriate factor of c). Lorentz-covariant expressions Tµ1µ2...µn can carry more
than a single free Lorentz index, and they are in this case generically called tensors. The number of free
indices denotes the rank of the tensor. Lorentz tensors transform as

Tµ1µ2...µn → T ′µ1µ2...µn = Λµ1
ν1Λ

µ2
ν2 . . .Λ

µn
νnT

ν1ν2...νn , (1.3.38)

hence generalising the transformation law (1.3.36).
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Exercise 1.3. In 1987 the supernova SN1987A exploded in a nearby galaxy, the Large Magellanic
Cloud. Two neutrino detectors, one at Brookhaven in the US and one at Kamiokande in Japan,
detected neutrino bursts that could be used to set an upper bound on the neutrino mass.

We consider the Brookhaven events in which the earliest neutrinos detected had an energy E1 ≃ 38
MeV, while the latest ones had an energy E2 ≃ 22 MeV with a difference in arrival times of at most
5 seconds. The distance of the Large Magellanic Cloud is L = 50 kiloparsec (1.543 × 1021 m). As
these neutrinos were likely produced at the same time, the most energetic ones should have travelled
faster to us. Use the observed time delay to establish an upper limit on the neutrino mass.

1.3.2 The Lorentz algebra
In our study of the (restricted) Lorentz group SO0(1, 3) and its elements, we have introduced its six
generators given, in the vectorial representation, by (1.3.21). The name ‘vectorial representation’ comes
from the fact that the transformation matrices that we studied act on four-vectors. Very importantly, we
have shown that any element Λ of the group can be uniquely determined by providing six real numbers,
as shown in (1.3.25).

By virtue of the properties of the elements of the Lorentz group, the matrices Jαβ form a Lie algebra,
that we denote so(1, 3), that we will investigate in the current subsection.

We consider the six generators Jαβ of the Lorentz algebra so(1, 3) that act on four-vectors. We thus
focus on what we call the vectorial representation of the algebra. These generators are defined by(

Jαβ
)µ
ν = i

(
ηαµδβν − ηβµδαν

)
, (1.3.39)

and they satisfy the commutation relations[
Jαβ , Jγδ

]
= i
(
ηβγJαδ − ηαγJβδ + ηδβJγα − ηδαJγβ

)
. (1.3.40)

In the context of Lie algebras, the rule defining the multiplication between two elements is called a Lie
bracket. With the matrix representation considered so far, the Lie bracket is equivalent to a commutator,
as for example given in (1.3.40). As any element of a Lie algebra can be written as a linear combination
of the generators, the commutation relations between the generators are sufficient to uniquely define the
algebra.

We have so far focused on the vectorial representation of the group, since the matrices Λ have been
introduced as acting on four-vectors. By definition, generators in any other representation must satisfy
the same relations (1.3.40), and may act on objects different from four-vectors. For instance, the gen-
eralisation of the quantum mechanical orbital momentum operator to the relativistic case leads to the
operators Lµν defined by

Lµν = i
(
xµ∂ν − xν∂µ

)
. (1.3.41)

They consist of an infinite-dimensional representation of the Lorentz group that acts on functions of
the space-time coordinates. The operators Lµν indeed satisfy commutation relations similar to those of
(1.3.40), [

Lαβ , Lγδ
]
= i
(
ηβγLαδ − ηαγLβδ + ηδβLγα − ηδαLγβ

)
. (1.3.42)

In the next chapters, we additionally consider the spinorial representations of the Lorentz algebra, that
are used to describe fermions. The generators will be different, and act on the elements of a different
vector space.
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Exercise 1.4. We consider an infinitesimal Lorentz transformation connected to the identity,

Λµν = δµν + εµν ,

where the matrix ε is an infinitesimal quantity.

1. Derive the symmetry properties of the tensor ϵµν , and demonstrate that εµν can consequently
be written as

εµν =
i

2
ωαβ(J

αβ)µν with
(
Jαβ

)µ
ν = i

(
ηαµδβν − ηβµδαν

)
.

In these expressions, ωαβ is real and antisymmetric under the exchange of its α and β indices.

2. With the help of the above definition for the generators of the Lorentz algebra Jαβ , show that
they satisfy the commutation relations[

Jαβ , Jγδ
]
= i
(
ηβγJαδ − ηαγJβδ + ηδβJγα − ηδαJγβ

)
.

3. We now consider a successive application of n infinitesimal Lorentz transformations such as
those above, each defined from the parameters ωαβ/n. Show that the matrix Λ defined by

Λ = exp

[
i

2
ωαβJ

αβ

]
belongs to the restricted Lorentz group SO0(1, 3), and that it hence represents a proper and
orthochronous Lorentz transformation.

It is now time to investigate further the Lorentz algebra (1.3.40) in order to characterise the associated
representations. To achieve this, we define J i ≡ Jjk with (i, j, k) being a circular permutation of (1, 2, 3),
and Ki ≡ J0i. In this notation, we can write the Jαβ and Jαβ tensors as

Jαβ =


0 K1 K2 K3

−K1 0 J3 −J2

−K2 −J3 0 J1

−K3 J2 −J1 0

 and Jαβ =


0 −K1 −K2 −K3

K1 0 J3 −J2

K2 −J3 0 J1

K3 J2 −J1 0

 . (1.3.43)

Each element of these tensors is itself a 4× 4 matrix. It is useful to simplify the Lorentz algebra (1.3.40)
to [

J i, Jj
]
= iJk ,

[
J i,Kj

]
= iKk and

[
Ki,Kj

]
= −iJk , (1.3.44)

with any triplet (i, j, k) being a circular permutation of (1, 2, 3). Alternatively, these relations can be
written by means of the totally anti-symmetric tensor εijk defined from ε123 = 1,[

J i, Jj
]
= iεijkJ

k ,
[
J i,Kj

]
= iεijkK

k and
[
Ki,Kj

]
= −iεijkJk . (1.3.45)

We next introduce the pair of conjugate generators N i and N̄ i defined by

N i =
1

2

(
J i + iKi

)
and N̄ i =

1

2

(
J i − iKi

)
. (1.3.46)

By doing so, we have made the Lorentz algebra so(1, 3), that consists of a real vector space, to be-
come so(1, 3)C = so(1, 3) × C, that is now a complex vector space. The definitions (1.3.46) allow us to
rewrite (1.3.44) as [

N i, N j
]
= iNk ,

[
N̄ i, N̄ j

]
= iN̄k and

[
N i, N̄ j

]
= 0 , (1.3.47)

with (i, j, k) being again a circular permutation of (1, 2, 3). These relations can be alternatively rewritten
by means of the totally anti-symmetric tensor εijk defined from ε123 = 1. This yields[

N i, N j
]
= iεijkN

k ,
[
N̄ i, N̄ j

]
= iεijkN̄

k and
[
N i, N̄ j

]
= 0 , (1.3.48)

which indicates that the Lorentz algebra has two commuting sub-algebras.
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Exercise 1.5. Demonstrate that the commutation relations satisfied by the generator Jαβ of the
Lorentz algebra, [

Jαβ , Jγδ
]
= i
(
ηβγJαδ − ηαγJβδ + ηδβJγα − ηδαJγβ

)
,

can be rewritten as[
N i, N j

]
= iNk ,

[
N̄ i, N̄ j

]
= iN̄k and

[
N i, N̄ j

]
= 0 .

In these last expressions, (i, j, k) stands for a circular permutation of (1, 2, 3) and the generators
N and N̄ are linear combinations of the rotation generators J i ≡ Jjk and the boost generators
Ki ≡ J0i,

N i =
1

2

(
J i + iKi

)
and N̄ i =

1

2

(
J i − iKi

)
.

From the results in (1.3.47) or (1.3.48), we can deduce that the generators N and N̄ independently
satisfy the same well-known Lie algebra, that of tri-dimensional rotations. However, strictly speaking
this does not consist of the algebra so(3) as we had to make the vector space complex through the
definitions (1.3.46). The algebra sl(2,C) is nevertheless in a one-to-one correspondence with so(3).

We thus demonstrated that so(1, 3)C ∼ sl(2,C)⊕ sl(2,C), which is hence in one-to-one correspondence
with so(3) ⊕ so(3). The complex Lorentz algebra so(1, 3)C is thus equivalent to two independent Lie
algebras, sl(2,C). Recalling that the generators N and N̄ are complex conjugates of each other, we
deduce that the (real) Lorentz algebra so(1, 3) ∼ sl(2,R)⊕ sl(2,R).

The commutation relations[
N i, N j

]
= iNk ,

[
N̄ i, N̄ j

]
= iN̄k and

[
N i, N̄ j

]
= 0 ,

show that the study of the representations of the Lorentz algebra is similar to the (simpler) study
of the finite-dimensional representations of sl(2,C)⊕ sl(2,C) (or equivalently of so(3)⊕ so(3)).

We can therefore characterise any given representation of the Lorentz algebra by a couple of numbers
(j1, j2), with j1 and j2 being either integer or half-integer. These two numbers refer to the represen-
tation under each of the sl(2,C) algebras. For a given representation, the associated generators N i

and N̄ i then act on matrices of dimension 2j1 + 1 and 2j2 + 1 respectively. Such a representation
has thus (2j1 + 1)(2j2 + 1) degrees of freedom.

Since so(3) is a sub-algebra of the Lorentz algebra, any finite-dimensional representation of the Lorentz
algebra is also a representation of so(3), which provides a handle on the spin of the particles (this will
be further discussed in the next section). However, spins must be combined vectorially in quantum
mechanics so that a given representation of the Lorentz algebra (j1, j2) generates many representations
of so(3) with spins |j1− j2|, |j1− j2|+1, . . . , j1+ j2−1, j1+ j2. For example, the representation (1/2, 1/2)
of the Lorentz algebra has four degrees of freedom, and it is the one that acts on real four-vectors. From
what is mentioned above, such a representation can describe both spin-0 and spin-1 representations of
so(3), with one and three degrees of freedom respectively.

1.4 The Poincaré algebra and group
As mentioned in section 1.2, the most general transformations that preserve the space-time inter-
val (1.2.12) has the structure (1.2.16), and is thus linear. The set of all such transformations form
the so-called Poincaré group ISO(1, 3), which includes the Lorentz group discussed in section 1.3 and
space-time translations. We recall that under a Poincaré transformation, a four-vector transforms as

xµ → x′µ = Λµνx
ν + aµ , (1.4.1)

where aµ corresponds to a space-time translation and Λµν to a Lorentz transformation preserving the
metric ηµν . Such a transformation is denoted by (Λ, a). By introducing the generators Jµν of Lorentz
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transformations in the vectorial representation defined in (1.3.39) and the generators Pµ of space-time
translations (that will be more precisely defined below), any element of the Poincaré group can be written
as

(Λ, a) = exp

[
i

2
ωµνJ

µν + iεµP
µ

]
, (1.4.2)

where ωµν and εµ represent the parameters of the transformation. This expression generalises (1.3.25)
when space-time translations are included.

We consider the six generators Jµν of the Lorentz algebra so(1, 3) and the four generators of space-
time translations Pµ. They satisfy the commutation relations[

Jµν , Jρσ
]
= i
(
ηνρJµσ − ηµρJνσ + ησνJρµ − ησµJρν

)
,[

Jµν , P ρ
]
= i
(
ηνρPµ − ηµρP ν

)
,[

Pµ, P ν
]
= 0.

(1.4.3)

These relations define the Poincaré algebra iso(1, 3).

Whilst we have focused on the vectorial representation of the Poincaré algebra thus far, the transforma-
tion (1.4.2) acting on four-vectors, the commutation relations above can be applied to any representation
of the Poincaré group.

Exercise 1.6. In this exercise, we derive the Poincaré algebra from the properties of Poincaré
transformations.

1. Show that the set of Poincaré transformations (Λ, a) forms a group.

We now consider an infinitesimal Poincaré transformation (Λ, a) = (1 + ω̃, ε̃) such that
Λµν = δµν + ω̃µν and aµ = ε̃µ, where ωµν and εµ are real and infinitesimal parameters.

2. From the exponential form of a Poincaré transformation involving the generators Jµν of the
Lorentz algebra in the vectorial representation and the generators Pµ of space-time transla-
tions,

(Λ, a) = exp

[
i

2
ωαβJ

αβ + iεαP
α

]
,

relate the parameters ωαβ and εα to the elements of the matrix ω̃ and scalar ε̃.

3. Rewrite the combination of two finite and one infinitesimal three Poincaré transformations

(Λ, a)

(
1 + ω̃, ε̃

)
(Λ, a)−1

as a single Poincaré transformation.

4. Calculate in two ways Λω̃Λ−1 (in particular by using the fact that the single Poincaré trans-
formation of the previous question is infinitesimal) to relate the quantities ω̃, ω, Λ, a, Jαβ and
Pα. Show that this yields

(Λ, a)Jµν(Λ, a)−1 = (Λ−1)µα(Λ
−1)νβ

(
Jαβ + aαP β − aβPα

)
,

(Λ, a)Pα(Λ, a)−1 = (Λ−1)αµP
µ .

5. We now consider that the finite Poincaré transformation (Λ, a) is infinitesimal too (with the
same parameters ωµν and εµ). Deduce from the above relations the algebra iso(1, 3) spanned
by the generators Jµν and Pµ.

The isometries of Minkowski space, hence the name ISO(1, 3), are crucial to the laws of physics. As
indicated by the postulates of special relativity, there is no place in space-time that is different from
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any other place, so that physics is translation-invariant. Moreover, physics additionally satisfies Lorentz
invariance (i.e. the laws of nature are invariant under rotations and boosts). On the other hand, our
universe is made of particles of different kinds, and a given particle has a mass, a spin (together with
the value of the projection of this spin onto some axis of reference), other quantum numbers (like an
electric charge), as well as a four-momentum. When we move from a specific inertial frame of reference
to another one, the particle’s four-momentum and projection of the spin change as determined by the
Poincaré group. However, all other quantum numbers are invariant under such a transformation. A
particle is defined as a set of states that mix only among themselves under Poincaré transformations.

This precisely defines what is called a representation of a group: a set of objects that mix under a
transformation of the group. In general, we determine a basis of states {|ψi⟩} that allows us to express
any state |ψ⟩, and in particular any transformed state |ψ′⟩, as a linear combination of the elements of the
basis,

|ψ⟩ = ci|ψi⟩ → |ψ′⟩ = (Λ, a)|ψ⟩ = c′i|ψi⟩ . (1.4.4)

If there is no subset of states that transform only among themselves, then the representation is irre-
ducible. The irreducible representations of the Poincaré algebra are known to be the elementary building
blocks yielding a correct description of nature. They imply that through experiments allowing for the
manipulation of momenta and spins, some states will mix (as embedded in a specific representation) and
some will not (as lying in different representations).

Finally, whereas there are numerous representations of the Poincaré group (we have so far only dis-
cussed the vectorial one), only unitary representations are relevant to describe particles. This originates
from the fact that matrix elements (that lie at the heart of any computation in QFT) must be invariant
under Poincaré transformations. In other words, if |ψ1⟩ and |ψ2⟩ denote two different states, then the
matrix element M = ⟨ψ1|ψ2⟩ must be invariant under any Poincaré transformation P ≡ (Λ, a). This
gives

M = ⟨ψ1|ψ2⟩ → M′ = ⟨ψ′
1|ψ′

2⟩ = ⟨ψ1|P†P|ψ2⟩ = ⟨ψ1|ψ2⟩ . (1.4.5)

The transformation P must therefore be either a unitary transformation or an anti-unitary transformation.
The latter are, however, not continuously connected to the identity that is unitary, and we consequently
focus on the former. The task left to be achieved is thus to determine the set of irreducible unitary
representations of the Poincaré group.

Particles are defined as objects that transform under irreducible unitary representations of the
Poincaré group.

We show in the next part of this section, following the work done by Wigner, that irreducible unitary
representations of the Poincaré algebra can be classified from the knowledge of only two numbers, the
eigenvalues of the two Casimir operators associated with iso(1, 3). According to Schur’s lemma, that is
named after the mathematician Issai Schur (1875 – 1941), such Casimir operators must be proportional
to the identity. They therefore consist of Lorentz-scalar quantities that automatically commute with the
generators of the Lorentz algebra Jµν . Therefore, the determination of the Casimir operators of the
Poincaré algebra is reduced to the determination of scalar operators that commute with the generators
of space-time translations Pµ.

The first Casimir operator C2 is quadratic in the generators. It consists of the norm of the generators
of space-time translations,

C2 = PµPµ . (1.4.6)

The second Casimir operator C4 is instead quartic in the generators, and it is built from the norm of the
Pauli-Lubanski operator Wµ. This last operator is named from the work of Wolfgang Pauli (1900 -1958)
and Józef Lubański (1914 – 1946). It is defined by [8]

Wµ =
1

2
εµνρσP

νJρσ , (1.4.7)

with εµνρσ being a fully antisymmetric tensor derived from ε0123 = 1. As usual in this case, the only
other non-vanishing elements of the tensor are obtained by including an extra sign flip per permutation
of the indices. The quartic Casimir operator then reads

C4 =WµWµ . (1.4.8)
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Exercise 1.7. Calculate the commutator [Pµ,W ν ] and deduce that WµWµ is a Casimir operator.

Any representation of the Poincaré algebra is thus characterised by two numbers, the eigenvalues of the
Casimir operators C2 and C4. These numbers consist of a real non-negative number m representing the
mass of the representation (i.e. the eigenvalue of C2), and a non-negative integer or half-integer number
j representing its spin (i.e. the eigenvalue of C4). Any state can subsequently be labelled with at least
two quantum numbers,

|ψ⟩ = |m, j; . . .⟩ , (1.4.9)

in which m2 and m2j(j + 1) are the eigenvalues of the operators C2 and C4 (as shown below). In these
notations, the dots stand for extra quantum numbers such as the eigenvalue pµ of the operator Pµ or the
eigenvalues of the generators of the associated little algebra.

We begin by showing that the four-momentum pµ is the eigenvalue of the space-time translation
operator Pµ. To this end, we consider a scalar object f(x) (that will be called a field later) depending
on the space-time coordinates, and a translation of parameters aµ. This choice of a scalar quantity is
only a proxy for any object depending on space-time coordinates, that could thus be any kind of Lorentz
tensor. As a result of a translation of parameters aµ, the coordinates transform as

xµ → x′µ = xµ + aµ . (1.4.10)

If we assume that f(x) is translation-invariant, then

f(x) → f ′(x′) = f(x) ⇔ f ′(x′) = f(x′ − a) , (1.4.11)

where we use a primed notation for the transformed quantities. The second equality is deduced
from (1.4.10), as xµ = x′µ − aµ. Considering an infinitesimal translation aµ = εµ, the right-hand
side of the last relation can be expanded to first order in ε. This gives, after replacing x′ by x,

f ′(x) = f(x)− εµ∂µf(x) = f(x) + iεµpµf(x) , (1.4.12)

where in the last equality, we have made use of the relativistic version of the correspondence principle
of quantum mechanics. The latter relates the four-momentum and the space-time derivative operator
through pµ = i∂µ (see chapter 2). The relation (1.4.12) can be compared to (1.4.2) which reads, once
expanded to first order,

(1, ε) = 1 + iεµPµ +O(ε2) . (1.4.13)

The four generators of the translations are identified with the four components of the momentum
operator.

We now characterise the representations of the Poincaré algebra by considering a state |ψ⟩ of mass m
and four-momentum pµ, which implies that p2 = pµpµ = m2. The eigenvalue of the first Casimir operator
C2 can be immediately derived,

C2|ψ⟩ = PµPµ|ψ⟩ = pµp
µ|ψ⟩ = m2|ψ⟩ . (1.4.14)

The eigenvalue associated with the quadratic Casimir operator C2 is thus the squared mass of the state.
We need to distinguish three situations according to the sign of m2. We first ignore the case of tachyonic
representations for which p2 < 0. They correspond to particles moving with a speed larger than the
speed of light, and there is currently no experimental indication that such a representation is realised in
nature. We are thus left with the case of massless particles (with m = 0) and that of massive particles
(with m > 0).

In order to assess the eigenvalue of the quartic Casimir operator C4, we consider the standard frame
for the four-momentum. The eigenvalue of C4 being a Lorentz scalar, we are indeed free to choose the
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frame in which it will be calculated. In the massive case, the standard frame is the frame in which the
particle is at rest,

pµ =


m
0
0
0

 with m > 0 . (1.4.15)

We note that such a frame can always be reached from any other frame of reference by applying a Lorentz
boost. The Pauli-Lubanski operators reads in this case

Wµ = −m


0
J23

J31

J12

 ≡ −m


0
J1

J2

J3

 , (1.4.16)

as P 0 = m and P 1 = P 2 = P 3 = 0. We immediately deduce that C4 is related to the angular momentum
operator J = (J1, J2, J3), that is associated with the three generators of the rotations. We have

C4
∣∣ψ〉 = −m2J2

∣∣ψ〉 = −m2(J2
1 + J2

2 + J2
3 )
∣∣ψ〉 = −m2j(j + 1)

∣∣ψ〉 . (1.4.17)

The state |ψ⟩ is therefore labelled by two quantum numbers, its mass m and its spin j, which arises as
the quantum number associated with the squared norm of the angular momentum operator J2. Massive
elementary particles are hence identified with irreducible representations of the Poincaré group with
definite spin j. Their polarisation states are arranged in multiplets of size 2j + 1, each element differing
in the projection j3 of their spin that can take 2j +1 different eigenvalues (j3 = −j,−j +1, . . . , j − 1, j),

|ψ⟩ ≡ |m, j; pµ, j3⟩ . (1.4.18)

This last property can be alternatively recovered by working out the little algebra associated with
the four-momentum (1.4.15). The little algebra is defined as the sub-algebra of the Lorentz algebra that
leaves the momentum (1.4.15) invariant. It consists of the tri-dimensional rotation algebra so(3), whose
Casimir operator is J2 = J2

12 + J2
23 + J2

31. We get to the same conclusion as in (1.4.18).

Massive representations |m, j; pµ, j3⟩ of the Poincaré algebra are classified according to their mass
m (and their four-momentum pµ given by (1.4.15) in the standard frame), as well as their spin
quantum number j (related to the eigenvalue of J2, i.e. j(j + 1)) and its projection j3, that allows
for the categorisation of all the components within a given multiplet.

In the massless case, a frame such as that provided in (1.4.15) does not exist, as it would lead to the
unphysical consequence that the particle’s energy vanishes. A different treatment is thus in order. We
opt to choose as a standard frame the frame in which the particle’s momentum is aligned with the Oz
direction,

pµ =


E
0
0
E

 with pµpµ = m2 = 0 . (1.4.19)

In this expression, the energy E is an arbitrary positive real number (cases featuring negative energy are
ignored). In this frame of reference, the eigenvalues of the two Casimir operators are zero,

C2
∣∣ψ〉 = C4

∣∣ψ〉 = 0 . (1.4.20)

In order to further characterise this representation, we opt to work out the little algebra associated with
the four-momentum (1.4.19). It contains three operators,

J12 = J3 , T 1 ≡ J23 + J02 = J1 +K2 and T 2 ≡ J31 − J01 = J2 −K1 , (1.4.21)

that satisfy the algebra

[J3, T 1] = iT 2 , [J3, T 2] = −iT 1 and [T 1, T 2] = 0 . (1.4.22)

This algebra is iso(2), i.e. the algebra of the isometries of a two-dimensional Euclidean plane that is
also known as the algebra of the translations and rotations in two dimensions. To avoid handling the
continuous degrees of freedom related to the translation operators T 1 and T 2, that do not seem to be
realised in nature, we set their eigenvalues to zero.
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Exercise 1.8. Show that the little algebra for massless particles is that of iso(2). To this aim,
we propose to consider the standard frame of reference for massless particles in which the particle’s
momentum is aligned with the Oz axis, and to determine the constraints that are satisfied by a
Lorentz transformation leaving the corresponding momentum operator invariant.

A massless representation of the Poincaré algebra is therefore labeled as

|ψ⟩ ≡ |0, 0; pµ, λ⟩ , (1.4.23)

in which we denote the eigenvalue of the J3 operator, that is either an integer or a half-integer, by λ. We
hence have

J3|0, 0; pµ, λ⟩ = λ |0, 0; pµ, λ⟩ and T 1|0, 0; pµ, λ⟩ = T 2|0, 0; pµ, λ⟩ = 0 . (1.4.24)

A simple calculation leads to
Wµ|0, 0; pµ, λ⟩ = λ pµ |0, 0; pµ, λ⟩ , (1.4.25)

which shows that the Pauli-Lubanski operator and the momentum operator are linearly dependent. The
proportionality factor λ, that is also the eigenvalue of the J3 operator, is called the helicity. Promoting
this relation to a relation between operators,

Wµ = ĥ Pµ , (1.4.26)

we can derive a definition for the helicity operator ĥ from (1.4.7),

ĥ =
p · J
||p||

. (1.4.27)

The helicity is therefore intuitively seen as the projection of the particle’s spin onto the particle’s direction
of motion. It can thus only take two values, a positive one and a negative one.

It can be shown that in the massless case, the helicity operator ĥ commutes with all the generators of
the Poincaré algebra and therefore consists of an additional Casimir operator. As a consequence, Lorentz
transformations cannot mix states of different helicities, and each helicity eigenstate is a multiplet by itself.
This contrasts with the massive case, in which all spin projection states form a multiplet of dimension
2j + 1 (for a spin j) and mix under Lorentz transformations. In addition, the helicity eigenvalue is
independent of the reference frame.

In general, it turns out that parity invariance is applicable when massless particles are considered.
Consequently, a state of negative helicity |0, 0; pµ,−λ⟩ must always be matched with a state of posi-
tive helicity |0, 0; pµ, λ⟩, as a parity transformation flips the sign of the helicity (the direction of the
three-momentum is flipped under a parity transformation). This applies in particular to the case of
electromagnetism and the two states of polarisation of light, as well as that of quantum chromodynamics
(the theory of the strong interaction).

Massless particles are organised in singlet representations |0, 0; pµ, λ⟩ of the Poincaré algebra, with
a definite helicity λ that corresponds to the projection of the particle’s angular momentum onto
the direction of the four-momentum pµ. In the case of theories that respect parity invariance (like
electromagnetism), we must always consider pairs of states that differ by the sign of their helicity
(with the exception of the spin zero case for which there is only one state).

1.5 Summary
This chapter has been built on the postulates of special relativity stated by Einstein more than 100 years
ago: the laws of physics must satisfy Poincaré invariance, and the speed of light is universal. Starting
from these two principles, we have derived the structure of space-time and recovered the Lorentz and
Poincaré groups that include all transformations which leave physics unchanged.
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The study of the representations of the Lorentz and Poincaré groups consists of one of the cornerstones
of modern particle physics and QFT. In particular, it enables the definition of the concept of a particle:
a particle is an object that transforms under irreducible unitary transformations of the Poincaré group.
In order to further characterise particles, we distinguished two situations, the massive and the massless
ones.

□ Massive particles of momentum pµ and mass m are represented by states |m, j; pµ, j3⟩, where j = 0,
1/2, 1, 3/2, ... stands for the particle’s spin. These states are arranged in multiplets of size 2j + 1,
each component differing by the projection of the spin j3 = −j, −j + 1, ..., j − 1, j.

□ Massless particles of momentum pµ are organised in multiplets |0, 0; pµ, λ⟩ of definite helicity λ,
that corresponds to the projection of the particle’s spin onto its direction of motion.



d

Chapter 2

Quantum mechanics, relativity and
fields

2.1 Introduction

Quantum mechanics gradually appeared at the beginning of the 20th century, with the introduction of
a finite minimal quantum of action to explain the observed spectral distribution of thermal radiation
(the Planck’s constant [9] that bears the name of the German physicist Max Planck (1858 – 1947)), the
concept of a quantum of energy by Einstein [10], and finally the construction of the core equation of
quantum mechanics by the German physicist Erwin Schrödinger (1887 – 1961) [11]. Though quantum
mechanics is known today as an amazingly efficient theory to explain all phenomena at the microscopic
scale, it took many years to find a suitable interpretation to the solution of the Schrödinger equation. This
solution, called the wave function, corresponds to a probability amplitude that provides a probabilistic
interpretation to the potential results of any experiment. This interpretation is known as the Copenhagen
interpretation. It was developed by Niels Bohr (1885 – 1962), Max Born (1882 – 1970) and their group.
Today the frontier between classical and quantum physics is much better explored and the naive separation
between the two can be improved using a detailed theory of measurement. This is, however, not discussed
in these notes, for which the old Copenhagen interpretation of quantum mechanics is sufficient.

The principles of quantum mechanics are set out through several postulates that make a connection
between theory and experiment from a few hypotheses. They detail how to define a physical system,
how to interpret the results of an experiment made on this system, and how it evolves with time. These
postulates are collected in section 2.2, that additionally includes a reminder of all mathematical tools
and definitions relevant to quantum mechanics (Hilbert spaces and operators acting on them). The Dirac
notation, named after the physicist Paul Dirac (1902 – 1984) who introduced it in 1939 [12], is also
reviewed as this elegant and abstract formulation of quantum mechanics is used consistently throughout
this document. Finally, we highlight two special operators, the position and momentum operators x̂ and
p̂, as well as the Schrödinger and Heisenberg pictures addressing time evolution in quantum mechanics.
The postulates of quantum mechanics are applied in section 2.3 to one of the most important systems in
classical and quantum physics: the simple harmonic oscillator. We solve the associated problem in Dirac
notation and derive the spectrum of the corresponding Hamiltonian in an algebraic manner. This leads
to the introduction of ladder operators, the annihilation and creation operators a and a†, that are crucial
in QFT for the description of particle and antiparticle creation and annihilation.

Section 2.4 highlights the classical case, setting the stage that will allow us to establish the relationship
that exists between quantum fields and simple harmonic oscillators. We begin with a brief introduction to
classical field theory, that we present as the continuous limit of a classical mechanical system of n particles
localised in n positions. We define fields, their first-order derivatives and their conjugate momenta, and we
next discuss existing possibilities to express the equations of motion dictating the evolution of the system.
The latter can be written either by means of a system of second-order differential equations in the so-called
Lagrangian formalism [13], or by means of a system of first-order differential equations in the so-called
Hamiltonian formalism [14]. This discussion involves the definition of the action, the Lagrangian and the
Hamiltonian of the system, several quantities that are central for the material presented in these notes.
We next elaborate on the relationship between symmetries and conservation laws. This relationship is
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manifest through Noether’s theorem [15], a theorem that bears the name of the German physicist and
mathematician Emmy Noether (1882 – 1935). Taking the example of the invariance of the laws of physics
under space-time translations, we close the section with the introduction of the energy-momentum tensor
and the reasons why energy and momentum are conserved quantities with respect to the laws of nature.

In section 2.5, we present a first approach to quantum fields and show how these objects allow for a
multiparticle theory as required by special relativity. Special relativity indeed enables the conversion of
energy into particle-antiparticle pairs, and conversely particles and antiparticles can either annihilate or
lead to the creation of other particle species. QFT consists of the theoretical framework allowing us to
handle such a situation, in which the number of particles is arbitrary and could change over time. We
demonstrate this from the simplest relativistic equation of motion, the Klein-Gordon equation [16, 17]
that bears the names of Oskar Klein (1894 – 1977) and Walter Gordon (1893 – 1939) who independently
derived it. We consider the case of a real scalar field, which allows us to highlight how fields can be seen
as infinite sets of harmonic oscillators and to introduce the procedure called second quantisation [18].

2.2 The postulates of quantum mechanics
Quantum mechanics aims to predict the evolution of a physical system as observed experimentally. It
relies on a small number of postulates that allow not only for a precise definition of the state of the
physical system, but also for an interpretation of the results of any measurement carried out on the
system. Moreover, quantum mechanics provides methods to predict the evolution of the system over
time. Clearly, the most surprising aspect of quantum mechanics is its probabilistic nature, that associates
to all possible results of an experiment a probability of occurring. This contrasts with the classical case
in which the evolution of the system is fully determined once the initial conditions are fixed.

2.2.1 The state of a physical system
In quantum mechanics, the state of a physical system is described by wave functions, i.e. complex-valued
functions whose modulus squared can be interpreted as a probability density. In the following, we choose
to rely on the abstract formalism developed by Dirac to describe quantum states. This involves Hilbert
spaces and their generalisations, named after the German scientist David Hilbert (1862 – 1943), and a
notation in terms of kets and bras to handle state vectors.

A Hilbert space H is a specific type of vector space. Any element |ψ⟩ of this space is called a ket, and
it has all the usual properties of any element of any complex vector space. In addition, we associate to
each state vector a dual vector represented by the bra ⟨ψ|. This naturally leads to the introduction of
the dual space of linear functionals acting on H. It corresponds to a space of functions f that assign a
complex scalar f(ψ) to each state vector |ψ⟩, with properties such as that for any two states |ϕ⟩ and |ψ⟩,
and for any two complex scalars a and b,

f(aϕ+ bψ) = af(ϕ) + bf(ψ) . (2.2.1)

The set of linear functionals forms a vector space once we define the sum of two functionals f and g by

(f + g)(ψ) = f(ψ) + g(ψ) . (2.2.2)

The bra vector ⟨ψ| is then a linear functional acting on the space of ket vectors,

⟨ψ| ≡ fψ(·) = ⟨ψ| ·⟩ , (2.2.3)

where the dot represents the generic argument of the functional. There is a one-to-one correspondence
between bras and kets, and we recall that the dual to c|ψ⟩ is c∗⟨ψ|, H being a complex vector space.

A Hilbert space is defined as a complex inner product space that is complete with respect to the
distance function induced by the inner product. In other words, it fulfills the following properties:

□ Vector space – The vector space H is a set whose elements may be added together and multiplied
by complex numbers (i.e. scalars). This equivalently means that for any two state vectors |ψ⟩ and
|ϕ⟩, the sum |ψ + ϕ⟩ ≡ |ψ⟩+ |ϕ⟩ belongs to the space H. Moreover, if c is a complex number, then
the state vector c|ψ⟩ also belongs to H.

□ Inner product – The inner product between a bra ⟨ϕ| and a ket |ψ⟩, ⟨ϕ|ψ⟩, maps any pair of
elements of H to a complex number. This inner product allows for the introduction of the notion
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of orthogonality. Two state vectors |ϕ⟩ and |ψ⟩ are said to be orthogonal if ⟨ϕ|ψ⟩ = 0. Moreover, a
vector is normalised if ⟨ϕ|ϕ⟩ = 1.
8 Conjugate symmetry – The inner product is conjugate symmetric. For any two state vectors

|ψ⟩ and |ϕ⟩, we have
⟨ϕ|ψ⟩ = ⟨ψ|ϕ⟩∗ . (2.2.4)

The scalar product ⟨ψ|ψ⟩ is thus real, and it allows for the introduction of the norm of a state
||ψ|| defined by

||ψ|| =
√
⟨ψ|ψ⟩ . (2.2.5)

8 Linearity/anti-linearity – The inner product is anti-linear in its first argument and linear in
its second argument. For any two complex numbers λ1 and λ2 and any three vector states
|ψ1⟩, |ψ2⟩ and |ϕ⟩, we have〈

λ1ψ1 + λ2ψ2

∣∣ϕ〉 = λ∗1⟨ψ1|ϕ⟩+ λ∗2⟨ψ2|ϕ⟩ ,〈
ϕ
∣∣λ1ψ1 + λ2ψ2

〉
= λ1⟨ϕ|ψ1⟩+ λ2⟨ϕ|ψ2⟩ .

(2.2.6)

8 Positive definiteness – The inner product is positive definite. This implies that

⟨ϕ|ϕ⟩ ≥ 0 and ⟨ϕ|ϕ⟩ = 0 ⇔ |ϕ⟩ = 0 , (2.2.7)

where the null vector is denoted by 0 (as an alternative to |0⟩). The positive definiteness of the
inner product is an essential ingredient to define probabilities, on which quantum mechanics
as a whole relies.

□ Metric space – The inner product endowing the space allows for the definition of a distance between
two state vectors |ψ⟩ and |ϕ⟩. This distance is defined by ||ψ−ϕ||. It is symmetric under the exchange
of the states |ψ⟩ and |ϕ⟩, is always positive, and the distance between a state and itself is zero.
Moreover, the triangle inequality holds: for any three state vectors |ψ⟩, |ϕ⟩ and |χ⟩,

||ϕ− ψ|| ≤ ||ϕ− χ|| + ||χ− ψ|| . (2.2.8)

This last property stems from the more general Cauchy-Schwarz inequality satisfied by the vector
space inner product,

⟨ϕ|ψ⟩2 ≤ ⟨ϕ|ϕ⟩ ⟨ψ|ψ⟩ , (2.2.9)

that carries the names of the mathematicians Augustin-Louis Cauchy (1789 – 1857) and Hermann
Schwarz (1843 – 1921).

□ Completeness – If a series of state vectors
∑
n |ψn⟩ converges absolutely, namely that

∑
n ||ψn||

converges, then its limit belongs to H.

Postulate on the state of a system – The physical state of a system is specified by a state vector
of a Hilbert space H represented by the ket |ψ⟩. This ket contains all the information about the
physical state.

Kets |ψ⟩ represent a vectorial manner to handle the usual wave functions of quantum mechanics,
and they provide a practical way to describe and understand the state of a system of particles and its
evolution. When accounting for special relativity, the number of particles comprised in the system is,
however, no longer fixed. This originates from the fact that mass is just one form of energy among
others. Consequently energy can be converted into mass via the creation of a particle-antiparticle pair.
Conversely, particles can annihilate or turn into other kinds of particles.

It actually turns out that relativistic corrections to any predictions for a microscopic-scale problem,
that are of order v/c where v is a typical speed for the system considered, are generally not very relevant
with respect to the possibility of producing new particles. This points to the necessity of constructing a
multiparticle theory (i.e. quantum field theory) in which particles can be created and annihilated. This
automatically leads the procedure called second quantisation, which consists of the canonical way to
quantise relativistic objects in a manner that accounts for the possible creation and annihilation of an
arbitrary number of particles. The use of the wording ‘second quantisation’ highlights that wave functions
describing the state of a system are promoted to operators, allowing for the creation and annihilation of
particles and antiparticles. This is discussed in detail in section 2.5.
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2.2.2 Measurements

In order to relate measurements carried out on physics systems described by state vectors of a Hilbert
space H, we need to introduce linear operators acting on that space and detail several of their properties.
Operators are mathematical objects that map vectors onto vectors. For instance, the relation

A |ϕ⟩ = |χ⟩ (2.2.10)

indicates that the action of an operator A on the state |ϕ⟩ gives the state |χ⟩. All operators considered
in these notes are linear operators so that for any two kets |ψ1⟩ and |ψ2⟩ and complex numbers λ1 and
λ2,

A
∣∣λ1ψ1 + λ2ψ2

〉
= λ1A|ψ1⟩+ λ2A|ψ2⟩ . (2.2.11)

The action of a linear combination of two operators A and B on a ket |ψ⟩ is also an operator, that is
defined by (

λA+ µB
)∣∣ψ〉 = λA|ψ⟩+ µB|ψ⟩ , (2.2.12)

for any two complex numbers λ and µ. In the following, the word ‘linear’ is always understood, and is
therefore no longer specified. Likewise, the action of the product A1A2 . . . An of the n operators A1, A2,
..., An on the ket |ψ⟩ is an operator. It is defined by

A1A2 . . . An
∣∣ψ〉 = A1

(
A2 . . . An|ψ⟩

)
= A1

(
A2

(
. . . (An|ψ⟩) . . .

))
. (2.2.13)

This is equivalent to the successive actions of these operators starting from the right, that is of An, then
of An−1, etc. The ordering of the operators is very important because for two operators A and B, the
action of AB is generally not equivalent to that of BA. This property can be characterised in general
through another operator called the commutator [A ,B] of the operators A and B,[

A,B
]
= AB −BA . (2.2.14)

We have so far defined the action of operators acting on the left, i.e. on ket vectors. We can additionally
define the action of an operator on the right, i.e. on bra vectors. This is achieved by the introduction of
the concept of a matrix element of the operator A between two state vectors |ϕ⟩ and |ψ⟩,

⟨ϕ|A|ψ⟩ =
〈
ϕ
∣∣(A|ψ⟩) = (〈ϕ|A)∣∣ψ〉 . (2.2.15)

The name ‘matrix element’ is justified below, when we describe a way to determine a representative
matrix of an operator. Matrix elements further allow for the definition of the adjoint operator A† of an
operator A through the relationship

⟨ϕ|A†|ψ⟩∗ = ⟨ψ|A|ϕ⟩ . (2.2.16)

The ket A|ϕ⟩ and the bra ⟨ϕ|A† are thus dual to each other. Finally, the operator A is said to be
Hermitian if it satisfies

A = A† , (2.2.17)

which means that
⟨ϕ|A|ψ⟩ = ⟨ψ|A|ϕ⟩∗ . (2.2.18)

Any Hermitian operator whose eigenvectors (see below) form a complete set is called a self-adjoint oper-
ator, or equivalently an observable operator (also known as an observable for short). This should not be
confused with the term ‘observable’ in common language, that refers instead to an ‘observable property’.
Not all Hermitian operators are observables, but all usual Hermitian operators that are used in quantum
mechanics are observables. The proof however lies beyond the scope of these notes.

Postulate on the definition of a measurable quantity – In quantum mechanics any measurable
physical quantity A is described by an observable A. The operator A is thus Hermitian, and its
eigenvectors form a complete basis of the space H of state vectors.
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Two important examples of observables are the position operator x̂ and the momentum operator p̂.
In the case of a system made of a single particle localised in a position x, the action of these operators
on the corresponding ket |ψ⟩ is defined by

x̂|ψ⟩ = x|ψ⟩ and p̂|ψ⟩ = −i∇|ψ⟩ . (2.2.19)

The action of the position operator x̂ amounts to ‘multiply the state by the position of the state x’, and
that of the momentum operator p̂ involves a first-order derivative. The circumflex accent put on the
operators allows us to distinguish them from the position and the momentum themselves, and are thus
introduced for clarity. In general, they are nevertheless omitted. The components of the operators x̂ and
p̂ satisfy the commutation relations [

x̂j , p̂k
]
= i δjk , (2.2.20)

in which we recall that the Latin indices j and k range from 1 to 3. Any two operators A and B satisfying
a commutation relation of the form (2.2.20) are said to be canonically conjugate. This means that the
two operators A and B satisfy the canonical commutation relation,[

A ,B
]
= i . (2.2.21)

Operators can also be constructed directly from a ket |ψ⟩ and a bra ⟨ϕ|, using their outer product (also
called their dyadic product)

|ψ⟩⟨ϕ| . (2.2.22)

In order to understand that the previous expression corresponds to an operator, it is sufficient to inves-
tigate its action on a ket |χ⟩. By definition,(

|ψ⟩⟨ϕ|
)

|χ⟩ = |ψ⟩
(
⟨ϕ|χ⟩

)
. (2.2.23)

The right hand side of this equality shows that the result of the application of the operator |ψ⟩⟨ϕ| on the
ket |χ⟩ gives as a result the ket |ψ⟩ times the scalar ⟨ϕ|χ⟩. This precisely corresponds to the action of an
operator.

If the application of the operator A on a non-zero ket |ψa⟩ gives as a result the same ket times a
complex constant a,

A |ψa⟩ = a |ψa⟩ , (2.2.24)

the ket |ψa⟩ is called an eigenket or an eigenvector of the operator A. The proportionality coefficient a is
the corresponding eigenvalue of A, and can be zero if A|ψa⟩ = 0. The eigenvalue is non-degenerate when
all the eigenkets |ψa⟩ associated with an eigenvalue a are proportional to each other. On the contrary,
it is degenerate when there exist several linearly independent eigenvectors that correspond to a specific
eigenvalue. Because of the linearity property (2.2.11), any linear combination of these eigenvectors is
also an eigenvector of A, and the dimension of the vector subspace of H generated by all kets |ψa⟩ is the
degree of degeneracy (or the degeneracy) of the eigenvalue a.

The eigenvalues and eigenvectors of a Hermitian operator have two important properties: the eigen-
values are real and the eigenkets corresponding to different eigenvalues are orthogonal to each other.

Exercise 2.1. Consider an arbitrary Hermitian operator A that is defined on a Hilbert space H.

1. Prove that the eigenvalues of A are real.

2. Prove that eigenkets corresponding to different eigenvalues are orthogonal to each other.

It is often useful to normalise the eigenkets |a1⟩, |a2⟩, . . . corresponding to different eigenvalues a1,
a2, . . . of a Hermitian operator A to 1 so that they form an orthonormal set {|an⟩}. Consequently, for
any two vectors |ai⟩ and |aj⟩ of this set,

⟨ai|aj⟩ = δaiaj . (2.2.25)

In this expression, δaiaj is the Kronecker delta symbol that has values 1 for ai = aj and 0 otherwise. If
some or all the eigenvalues are degenerate, relation (2.2.25) must be generalised. A practical set of eigen-
vectors is then obtained by not only normalising the eigenvectors associated with different eigenvalues,
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but also by orthonormalising those defining the eigensubspace associated with each degenerate eigenvalue.
For each eigenvalue ai that is degenerate we introduce a new label sik allowing for a distinction of the
associated orthonormal eigenvectors. The values of the integer k range from 1 to the degeneracy of the
eigenvalue ai (i.e. the dimension of the corresponding eigensubspace). In this notation, relation (2.2.25)
becomes

⟨ai, sik|aj , sjℓ⟩ = δaiajδsiksjℓ . (2.2.26)

The set of eigenkets {|an, snm⟩} is said to be complete if the full Hilbert space is spanned by the set
of eigenkets {|an, snm⟩} of A. In order to keep the notation simple we omit the label s in the following.
As the set {|an⟩} can be used as a basis of vectors for the ket space H, any arbitrary ket |ψ⟩ can be
expanded on it,

|ψ⟩ =
∑
n

cn|an⟩ =
∑
n

|an⟩⟨an|ψ⟩ . (2.2.27)

The Fourier coefficients cn = ⟨an|ψ⟩ are defined as the projections of the ket |ψ⟩ along the kets of the
set {|an⟩}. In addition, the relation (2.2.27) shows that∑

n

|an⟩⟨an| = 1 , (2.2.28)

where the 1 appearing on the right-hand side of this equation stands for the identity operator. The
previous formula represents the completeness relation of the set {|an⟩}. It involves a sum of projection
operators |a1⟩⟨a1|, |a2⟩⟨a2|, . . . , in which each operator projects any ket of H onto its ‘coordinate’ along
the related ‘axis’ of the basis {|an⟩} of the ket vector space.

It may happen that two different observables A and B have a same complete set of eigenvectors. In
this case, A and B commute. Conversely, two observables that commute must have the complete set of
common eigenvectors.

Exercise 2.2. Consider an arbitrary observable A that is defined on a Hilbert space H, and that
possesses a complete set of eigenvectors {|an⟩}.

1. Demonstrate that any vector |ψ⟩ of H can be written as

|ψ⟩ =
∑
n

|an⟩⟨an|ψ⟩ .

2. Now consider an observable B for which {|an⟩} is also a complete set of eigenvectors. Show
that A and B commute.

3. If we consider two observables A and C, which commute, and assume that their spectrum of
eigenvalues is non-degenerate, show that A and C have a complete set of common eigenkets.

The properties above must be generalised in the context of an observable possessing a continuous
spectrum of eigenvalues. A practical (and non-trivial) example consists of the one-dimensional position
operator x̂. This example has the advantage that it additionally allows us to establish a connection with
the wave-mechanical approach of quantum mechanics. We consider the eigenvalue x0 of the operator
x̂, and write the corresponding eigenvector as |x0⟩. The one-dimensional version of the first relation
in (2.2.19) reads

x̂|x0⟩ = x|x0⟩ = x0|x0⟩ , (2.2.29)

the second equality representing the eigenvalue equation. In this relation, x is a variable and can thus take
any value, whereas x0 is a constant. In order for such an equation to be solved, one must introduce the
concept of distributions, that in particular includes the so-called Dirac delta function. This distribution
is defined by ∫ b

a

dx δ(x) f(x) =

{
f(0) for x ∈ [a, b]

0 for x /∈ [a, b]
, (2.2.30)
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for any function f(x) for which f(0) exists. In general the domain of integration is ]−∞,+∞[, which
leads to

f(0) =

∫ +∞

−∞
dx δ(x) f(x) , (2.2.31)

where f(x) is an arbitrary function defined on the set of real numbers and for which f(0) exists. The
definition (2.2.30) of the delta function yields

x δ(x− a) = a δ(x− a) ∀a ∈ R , (2.2.32)

which implies that the delta function has the right properties to represent the eigenstates of the operator x̂.
Furthermore, it can be used to define the orthogonality between two eigenvectors |x′⟩ and |x′′⟩ associated
with the eigenvalues x′ and x′′ of the x̂ operator,

⟨x′′|x′⟩ = δ(x′′ − x′) . (2.2.33)

The states {|x⟩} do not consequently belong to the Hilbert space H of state vectors. To deal with
this problem mathematically, we need to introduce the concept of rigged Hilbert spaces, generalising
Hilbert spaces to the case of distributions and continuous spectra (as for the x̂ operator for which all
possible eigenvalues x ∈ R are allowed). These technicalities go beyond the scope of this document, and
will consequently be ignored. We consider instead that the set {|x⟩} forms a basis of the Hilbert space
H since the operator x̂ is an observable, despite that strictly speaking these kets do not belong to H.
Relations (2.2.27) and (2.2.28) are generalised to

|ψ⟩ =
∫ ∞

−∞
dx |x⟩⟨x|ψ⟩ and

∫ ∞

−∞
dx |x⟩⟨x| = 1 . (2.2.34)

The inner product
ψ(x) ≡ ⟨x|ψ⟩ (2.2.35)

defines not only the wave function for the state |ψ⟩, but also the action of the bra ⟨x|. The quantity
⟨x|ψ⟩ can thus be interpreted as the probability amplitude that a position measurement on the system in
a state |ψ⟩ returns the value x, i.e. the precise meaning of the wave function. The representation (2.2.35)
of the wave function corresponds to a particular choice of basis within Dirac’s abstract Hilbert space
approach, the basis of the position states {|x⟩}. On the other hand, (2.2.35) shows that the bra ⟨x| is a
linear functional that relates any ket |ψ⟩ to a scalar quantity ψ(x). This bra can therefore be considered
as belonging to the dual space of H, although strictly speaking this is not the case as ⟨x| is a distribution
and not a functional. The second relation in (2.2.34) can also be used to define the projection of a state
|ψ⟩ on another state |ϕ⟩. The completeness relation of the states {|x⟩} indeed yields

⟨ϕ|ψ⟩ = ⟨ϕ|1|ψ⟩ =
∫ ∞

−∞
dx ⟨ϕ|x⟩ ⟨x|ψ⟩ =

∫ ∞

−∞
dx ϕ∗(x)ψ(x) . (2.2.36)

The above discussions can straightforwardly be generalised to three dimensions. The position eigen-
basis of the Hilbert state H is now made of the kets {|x⟩} that satisfy the properties

x̂|x⟩ = x|x⟩ , ⟨x|x′⟩ = δ(3)(x− x′) and
∫
R3

d3x |x⟩⟨x| = 1 , (2.2.37)

for any states |x⟩ and |x′⟩ associated with the eigenvalues x and x′. The last relation consists of the
completeness relation for the states |x⟩, and must be considered over the entire Euclidean space. In
Cartesian coordinates x = (x, y, z), we recall that

d3x = dx dy dz , (2.2.38)

and that the tri-dimensional delta function is defined by

δ(3)(x− x′) = δ(x− x′) δ(y − y′) δ(z − z′) . (2.2.39)

The connection with the usual quantum mechanical wave functions can be retrieved similarly to (2.2.35)
and (2.2.36),

ψ(x) ≡ ⟨x|ψ⟩ and ⟨ϕ|ψ⟩ =
∫
R3

d3x ⟨ϕ|x⟩ ⟨x|ψ⟩ =
∫
R3

d3x ϕ∗(x)ψ(x) . (2.2.40)
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Whilst this could be further generalised to a multiparticle situation, we only consider a one-particle case
for now. The multiparticle case will be (properly) treated in the context of QFT in the last part of this
chapter.

Instead of using the position basis, the treatment above can be repeated in momentum space. In this
case, we employ the so-called momentum basis that is formed by the momentum eigenkets {|p⟩}. These
kets satisfy the properties

p̂|p⟩ = p|p⟩ , ⟨p|p′⟩ = δ(3)(p− p′) and
∫
R3

d3p |p⟩⟨p| = 1 . (2.2.41)

Making use of the second definition in (2.2.19), and projecting the first relation of (2.2.41) onto the bra
⟨x|, we obtain

⟨x|p⟩ = 1

(2π)3/2
exp

[
ip · x

]
, (2.2.42)

with the normalisation factor stemming from the second relation of (2.2.41). The eigenvectors of the
momentum operator are hence plane waves. As in the case of the position basis for the Hilbert space of
state vectors, the eigenkets {|p⟩} are not vectors of the Hilbert space, which originates here from the fact
that the spectrum of eigenvalues of the operator p̂ is continuous. This technical problem is, however,
ignored in these notes (similar to the case of the position basis {|x⟩).

In our description of the position basis of H, we have introduced the relation (2.2.40) that associates the
(one-particle) state |ψ⟩ to a wave function ψ(x). Likewise, we can define a wave function in momentum
space ψ(p). The latter consists of the Fourier transform of ψ(x),

ψ(p) ≡ ⟨p|ψ⟩ =
∫
R3

d3x ⟨p|x⟩ ⟨x|ψ⟩

=
1

(2π)3/2

∫
R3

d3x e−ip·x ψ(x) ,

(2.2.43)

this relation being deduced from (2.2.37) and (2.2.42). The ‘coordinates’ of a state |ψ⟩ in the momentum
basis {|p⟩} are thus given by the Fourier transform of the wave function. Likewise, the inverse Fourier
transform gives

ψ(x) ≡ ⟨x|ψ⟩ =
∫
R3

d3p ⟨x|p⟩ ⟨p|ψ⟩

=
1

(2π)3/2

∫
R3

d3p eip·x ψ(p) .

(2.2.44)

The last two expressions show that we can deduce the completeness relation for the states {|p⟩} from
the completeness relation of the states {|x⟩} and vice versa. Moreover, the quantity ⟨x|p⟩ consists of the
ingredients relating the two bases.

Exercise 2.3. Show that the operators x̂ and p̂ are Hermitian, and that they are canonically
conjugate. This should be addressed component by component.

Exercise 2.4. Consider a state vector |ψ⟩ representing a single particle localised at a position x,
and show that while the momentum operator (2.2.19) is a derivative operator in position space, it
consists instead of a multiplicative operator in momentum space. Equivalently, demonstrate that

⟨p | p̂ |ψ⟩ = p ⟨p |ψ⟩ .

We now have all the technical ingredients to state the postulates of quantum mechanics on measure-
ments. The number and form of these postulates may vary from author to author, but their content
always describes the same physical hypotheses.
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Postulates on measurements – Any measurement of the quantity A on a physical system repre-
sented by the state vector |ψ⟩ can only give, as a result, one of the eigenvalues of the observable A
associated to A. The measurement of A is represented by the action of the operator A on |ψ⟩.
We first suppose that the spectrum of the operator A is discrete. The probability P(an) of obtaining
the eigenvalue an of the observable A for the result of the measurement of A on the state |ψ⟩ is
given by

P(an) =
|⟨an|ψ⟩|2

⟨ψ|ψ⟩
, (2.2.45)

where |an⟩ stands for the normalised eigenvector corresponding to an. Immediately after the mea-
surement, the state of the system collapses to the projection of |ψ⟩ onto the eigenvector |an⟩,

|ψ⟩ → |an⟩ ⟨an|ψ⟩ . (2.2.46)

If the eigenvalue an is p times degenerate, the previous equations are generalised to

P(an) =

p∑
j=1

|⟨anj |ψ⟩|2

⟨ψ|ψ⟩
and |ψ⟩ →

p∑
j=1

|anj⟩ ⟨anj |ψ⟩ , (2.2.47)

where the kets |an1⟩, |an2⟩, . . . , |anp⟩ form a basis of the eigensubspace associated with the eigenvalue
an of A. These relationships must be further generalised when A has continuous eigenvalues.

These postulates establish a connection between a physical notion, a quantity A that can be measured
by an apparatus during an experiment, and a particular mathematical operator A that is called an
observable. The mathematical properties of A are such that any measurement always results in a real
number. This is indeed ensured as the spectrum of an observable is always solely composed of real
eigenvalues. Furthermore, the possibility for an observable to feature a discrete spectrum of eigenvalues
(or at least a partially discrete spectrum of eigenvalues) leads to the notion of quantisation of the results
of a measurement. This is a fundamental particularity of quantum mechanics.

On the other hand, these postulates emphasise the probabilistic interpretation of quantum mechanics
through the relation (2.2.45). However, the sum of the probabilities to get all possible results for a
measurement is always equal to 1,∑

n

P(an) =
∑
n

|⟨an|ψ⟩|2

⟨ψ|ψ⟩
=

1

⟨ψ|ψ⟩
∑
n

⟨ψ|an⟩⟨an|ψ⟩ =
⟨ψ|ψ⟩
⟨ψ|ψ⟩

= 1 , (2.2.48)

after using the completeness relation (2.2.28). Finally, the collapse of the state (2.2.46) right after the
measurement guarantees its reproducibility. The change (2.2.46) of the system, that originates from a
measurement, is irreversible.

Before closing this section, we come back to operators and consider a basis of kets {|an⟩} that are
associated with a Hermitian operator A. This basis can be used to determine a matrix representation of
any operator B. This is achieved by utilising the completeness relation (2.2.28) twice, in the case of a
discrete spectrum and its generalised integral form in the case of a continuous spectrum. For a discrete
spectrum, we get

B =
(∑

j

|ϕj⟩ ⟨ϕj |
)
B
(∑

i

|ϕi⟩ ⟨ϕi|
)
=
∑
i,j

|ϕj⟩ ⟨ϕj |B|ϕi⟩ ⟨ϕi| . (2.2.49)

If the ket space is n-dimensional, the n2 complex numbers ⟨ϕj |B|ϕi⟩ can be organised in a square matrix
so that the index j refers to its row and the index i to its column,

B
.
=


⟨ϕ1|B|ϕ1⟩ ⟨ϕ1|B|ϕ2⟩ . . .

⟨ϕ2|B|ϕ1⟩ ⟨ϕ2|B|ϕ2⟩ . . .
...

...

 . (2.2.50)

This justifies the name matrix element that is given to the quantity ⟨ϕj |B|ϕi⟩. The explicit form of the
matrix representing the operator B obviously depends on the choice of the basis kets, several choices
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being generally possible. For this reason, the symbol .= appearing in (2.2.50) stands for ‘represented by’.
In addition, the knowledge of a matrix representation for the operator B automatically allows for the
determination of a matrix representation for the adjoint operator B†, that is obtained by transposition
and complex conjugation,

B† =
(
BT
)∗
. (2.2.51)

In a similar way, any arbitrary ket |ψ⟩ can be represented by a column vector of components and its dual
bra ⟨ψ| can be represented by a row vector of components,

|ψ⟩ .=


⟨a1|ψ⟩
⟨a2|ψ⟩
⟨a3|ψ⟩

...

 and ⟨ψ| .=
(
⟨ψ|a1⟩ ⟨ψ|a2⟩ ⟨ψ|a3⟩ . . .

)
. (2.2.52)

The generalisation to the continuous case is immediate.

As an example, we opt to focus on the case of the position operator x̂ and its complete set of kets {|x⟩}.
We consider a one-particle situation, and calculate the matrix element ⟨ϕ|A|ψ⟩ involving two one-particle
states |ψ⟩ and |ϕ⟩. Using the completeness relation (2.2.37) twice and the definition (2.2.40), we obtain

⟨ϕ|A|ψ⟩ =
∫
R3

d3x′
∫
R3

d3x′′ ⟨ϕ|x′⟩⟨x′|A|x′′⟩⟨x′′|ψ⟩

=

∫
R3

d3x′
∫
R3

d3x′′ ϕ∗(x′) ⟨x′|A|x′′⟩ψ(x′′) .

(2.2.53)

The set of matrix elements ⟨x′|A|x′′⟩ provides a representation of the operator A in the position basis.
This position representation of an operator A is particularly useful when the operator is a function of the
position A = f(x) such that

⟨x′|f(x)|x′′⟩ = f(x′′) δ(3)(x′ − x′′) , (2.2.54)

by virtue of the orthogonality properties (2.2.37) of the position states. The double integral in (2.2.53)
consequently reduces to a single integral,

⟨ϕ|f(x)|ψ⟩ =
∫
R3

d3x′ ϕ∗(x′) f(x′)ψ(x′) . (2.2.55)

2.2.3 Evolution of the system
The last postulate of quantum mechanics details the temporal evolution of the state of the physical system
when no measurement is taken.

Postulate on evolution – The evolution over time of a system that is described by the time-
dependent state vector |ψ(t)⟩ is governed by the Schrödinger equation

i
∂

∂t
|ψ(t)⟩ = H(t)|ψ(t)⟩ , (2.2.56)

where the (possibly time-dependent) Hamiltonian H(t) is the observable associated with the energy
of the system. The observableH(t) determines the dynamics of the system once the initial conditions
at a time t = t0 are fixed through the knowledge of the state vector |ψ(t0)⟩.

Equation (2.2.56) is a first-order differential equation with respect to time. We only need to choose
the initial conditions to derive all information possible on the system at later times. In this sense, the
evolution is deterministic, even though the information obtained is of a probabilistic nature at all times
according to the other postulates of quantum mechanics.

This implies that if the state vector |ψ(t)⟩ appearing in (2.2.56) is known at an initial time t0, its
expression at time t can be obtained by means of a time evolution operator U(t, t0) to be determined,

|ψ(t)⟩ = U(t, t0) |ψ(t0)⟩ . (2.2.57)
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The substitution of the above proposition for the state vector |ψ(t)⟩ in the Schrödinger equation (2.2.56)
shows that this operator satisfies the same evolution equation as |ψ(t)⟩,

i
∂

∂t
U(t, t0) = H(t)U(t, t0) (2.2.58)

with the initial condition U(t0, t0) = 1. Moreover, the operator U(t, t0) is unitary,

U−1(t, t0) = U†(t, t0) , (2.2.59)

as required from probability conservation. This is easily shown by considering a basis of eigenkets |a⟩ of
an observable A, and the expansion of the states |ψ(t0)⟩ and |ψ(t)⟩ in this basis as given by (2.2.27),

|ψ(t0)⟩ =
∑
a

ca(t0)|a⟩ and |ψ(t)⟩ =
∑
a

ca(t)|a⟩ . (2.2.60)

In general the modulus of any individual coefficient ca varies with time. Only in situations in which
the Hamiltonian H commutes with the observable A, we have |ca(t0)| = |ca(t)|. However, the total
probability must be conserved such that the relation (2.2.48) holds at all times. In particular, if the
initial state vector |ψ(t0)⟩ is normalised, then the state vector |ψ(t)⟩ is normalised too, and for all times,

⟨ψ(t0)|ψ(t0)⟩ = 1 → ⟨ψ(t)|ψ(t)⟩ = 1 . (2.2.61)

This yields ∑
a

|ca(t0)|2 =
∑
a

|ca(t)|2 and U†(t, t0)U(t, t0) = 1 . (2.2.62)

Conversely, unitarity of the evolution operator U†(t, t0)U(t, t0) = 1 guarantees the conservation of total
probability.

In addition, we impose that the evolution operator satisfies a composition property for successive time
evolutions,

U(t2, t1)U(t1, t0) = U(t2, t0) with t2 > t1 > t0 . (2.2.63)

This means that the same result must be obtained from the initial state |ψ(t0)⟩ both when we evolve the
system in time directly from t0 to t2 and when we utilise an intermediate step at time t1. Whereas in
principle (2.2.63) holds for any times t0, t1 and t2 (possibly satisfying another ordering), the unitarity
properties of U(t, t0) guarantees that (2.2.63) can always be written in a time-ordered way, with t0 <
t1 < t2.

Exercise 2.5. In this exercise we study the properties of the time evolution operator U(t, t0).

1. Consider three times t0, t1 and t2 such that t1 < t0 < t2. Assuming that the evolution operator
satisfies the relation

U(t2, t1)U(t1, t0) = U(t2, t0) ,

show, with the help of the Hermiticity properties of the evolution operator, that this equiva-
lently implies that

U(t1, t0)U(t0, t2) = U(t1, t2) ,

in which the times are ordered.

2. Consider an infinitesimal time evolution of parameter dt,

U(t0 + dt, t0) = 1 + Ω(t)dt .

Show that the operator Ω(t) is related to the Hamiltonian of the system through

Ω(t) = −iH(t) ,

by making use of the composition property (2.2.63) and the evolution equation (2.2.58).
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As U(t0, t0) = 1, an infinitesimal evolution from t0 to t0+dt can always be seen as a small deviation of
order dt from the identity. In exercise 2.5, we have shown that this infinitesimal evolution can be written
in terms of the Hamiltonian,

U(t0 + dt, t0) = 1− iH(t) dt . (2.2.64)

This allows for the extraction of the form of finite (non-infinitesimal) time evolutions, for which we
distinguish three cases as a function of the time-dependence of H(t). If the Hamiltonian H(t) ≡ H is
time-independent, the solution of (2.2.58) is a simple exponential,

U(t, t0) = exp
[
− iH(t− t0)

]
. (2.2.65)

We emphasise that H(t− t0) stands for the product of the time-independent Hamiltonian H and the time
difference t− t0. This relation can be proved by expanding the exponential as a Taylor series, computing
its first-order time derivative, and showing that (2.2.58) is satisfied,

exp
[
− iH(t− t0)

]
= 1− iH(t− t0)−

1

2
H2(t− t0)

2 + · · · ,

∂

∂t
exp

[
iH(t− t0)

]
= − iH −H2(t− t0) + · · · = −iH exp

[
− iH(t− t0)

]
.

(2.2.66)

If the Hamiltonian H(t) is instead time-dependent but the operators corresponding to different times t
and t′ commutes, i.e. [H(t), H(t′)] = 0, the form of the solution is similar and can be determined from
the composition of infinitesimal evolutions,

U(t, t0) = exp

[
− i

∫ t

t0

dt′ H(t′)

]
. (2.2.67)

The proof can be again obtained through the Taylor series expansion of the exponential. Finally if the
Hamiltonian operator H taken at different times t and t′ does not commute, i.e. [H(t), H(t′)] ̸= 0, the
formal solution is given by the Dyson series

U(t, t0) = 1 +

∞∑
n=1

(−i)n
∫ t

t0

dt1

∫ t1

t0

dt2 · · ·
∫ tn−1

t0

dtnH(t1)H(t2) · · ·H(tn) . (2.2.68)

In the previous discussion we have implicitly assumed that time evolution affects states and that
the form of the observables does not evolve with time, as shown for instance in the Schrödinger equa-
tion (2.2.56). This choice of attaching time evolution only to states is called the Schrödinger picture. A
state |a⟩ prepared at a time t0 hence evolves to time t as

|a⟩ → U(t, t0)|a⟩ . (2.2.69)

However, physical observations are associated with inner products. Taking an observableX as an example,
we can calculate its matrix element over two specific states |a⟩ and |b⟩, and assess how this evolves with
time from t0 to t. This gives

⟨b|X|a⟩ →
(
⟨b|U†) X (

U |a⟩
)
= ⟨b|

(
U†XU

)
|a⟩ , (2.2.70)

as only states evolve with time in the Schrödinger picture. In this expression, we have omitted the
arguments of the time evolution operator for clarity, and the last equality stems from the associativity
property of the multiplication of observables. There are, therefore, two equivalent approaches to unitary
transformations: the Schrödinger picture in which operators stay unchanged and states vectors evolve as
in (2.2.57) or (2.2.69); or the Heisenberg picture in which state vectors stay unchanged and time evolution
is attached to operators as in

X → U†XU . (2.2.71)

Finally, there is also a third possibility, called the interaction picture, in which parts of time evolution
are attached to operators and parts to state vectors. This case is discussed in more detail in the context
of scattering theory in section 3.5.

In order to study further the relationship between the Schrödinger and Heisenberg pictures in a simple
way, we assume that the Hamiltonian H is time-independent, and that the initial time is taken at the
origin t0 = 0. The evolution operator is thus given by (2.2.65),

U(t) ≡ U(t, 0) = exp
[
− iHt

]
with U(0) = 1 . (2.2.72)
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We consider an observable A that we represent by the operators AH and AS in the Heisenberg
picture and Schrödinger picture respectively, and the time evolution operator U(t) (the origin of
time being t0 = 0). These two versions of the same observable are related through relation (2.2.70),
which gives

AH(t) = U(t)† AS U(t) . (2.2.73)

Within the same notation, we represent a specific state vector by |ψS⟩ and |ψH⟩ in the Schrödinger
picture and Heisenberg picture respectively. These two versions of the same state are connected
through the relation (2.2.69), which reads

|ψS(t)⟩ = U(t)|ψH⟩ . (2.2.74)

At t = 0 the two operators and the two state vectors coincide,

AH(0) = AS and |ψS(0)⟩ = |ψH⟩ . (2.2.75)

At any later time t, the Heisenberg state vector stays fixed to its initial value while the Heisenberg form
of the operator evolves, whereas the Schrödinger state vector evolves while the Schrödinger form of the
operator is frozen to its initial value.

Obviously measurable physical quantities are predicted to be the same in the two pictures, that are
related through unitary transformations. The change from the Heisenberg picture to the Schrödinger
picture can thus be seen as an analog to a change of coordinates. For example, the expectation value of
the observable A always satisfies ⟨A⟩ ≡ ⟨A⟩S = ⟨A⟩H ,

⟨A⟩S = ⟨ψS(t) | AS | ψS(t)⟩ = ⟨ψS(0) | U†ASU | ψS(0)⟩ = ⟨ψH | AH(t) | ψH⟩ = ⟨A⟩H . (2.2.76)

The main interest in the Heisenberg picture is that the state vectors are fixed and that time evolution
only affects operators, whose studies can then be made through a plethora of standard techniques.

Differentiating (2.2.73) with respect to time and using the evolution equation (2.2.58) to get an ex-
pression of the first-order time-derivative of U(t), we obtain

dAH(t)

dt
= i
(
U†(t)HASU(t)− U†(t)ASHU(t)

)
+ U†(t)

∂AS

∂t
U(t)

= i
[
HH(t), AH(t)

]
+

(
∂A(t)

∂t

)
H
,

(2.2.77)

where we have introduced the operator HH(t) = U†HU in the commutator. In the simple cases in which
the Hamiltonian and the evolution operator commute, HH = U†HSU = HS ≡ H. In addition, the last
term in (2.2.77) is only present if the operator A has an intrinsic time dependence, a case that lies beyond
the scope of these notes.

In the Heisenberg picture, the time dependence of an operator AH(t) satisfies the so-called Heisen-
berg equations of motion,

dAH

dt
= i
[
HH, AH

]
+

(
∂A

∂t

)
H
, (2.2.78)

where HH is the Hamiltonian of the system in the Heisenberg picture. The explicit time dependence
of the operators has been omitted for simplicity.

There is a strong similarity between the Heisenberg equations of motion (2.2.78) and the classical
equations of motion when written with Poisson brackets (see section 2.4.2). As an example we consider
the position and the momentum of a particle evolving in a one-dimensional space, i.e. the operators x
and p. These operators are time-independent in the Schrödinger picture so that we can ignore the last
term in (2.2.78). On the contrary, they depend on time in the Heisenberg picture. Their equations of
motion read, omitting the time dependence for clarity,

dxH
dt

= i
[
HH, xH

]
and

dpH
dt

= i
[
HH, pH

]
, (2.2.79)
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which can be rewritten in the form

dxH
dt

=
∂HH

∂pH
and

dpH
dt

= −∂HH

∂xH
. (2.2.80)

The evolution of the position and momentum operators satisfy equations that are formally identical to
Hamilton’s canonical equations in classical mechanics.

Exercise 2.6. By making use of the canonical commutation relation (2.2.20) satisfied by the
(one-dimensional) x and p operators, i.e. [x, p] = i, show that the Heisenberg equations of motion
(2.2.79) can be written in the form (2.2.80).

The above results show that classical physics can be derived from quantum mechanics if there is a
classical counterpart of the quantum operator. The opposite is, however, not true in general. For example,
spin is a quantity that has no classical counterpart. The associated spin operator therefore satisfies the
Heisenberg equations of motion (2.2.78), but there is no classical analogue as spin can not be written in
terms of classical generalised coordinates.

In the opposite direction, i.e. from classical physics to quantum physics, there is a simple empirical
rule allowing us to guess an observable A from its expression in classical mechanics. This rule is called
the correspondence principle, and its validity is based on the fact that classical mechanics is a limit of
quantum mechanics for macroscopic objects.

The observable A(x,p, t), which describes a physical quantity A defined in classical mechanics,
is obtained through the replacement of the variables x and p by the associated operators in the
classical expression. This amounts to using the relationship

x → x̂ and p → p̂ = −i ∇ . (2.2.81)

Due to the non-commuting nature of operators, this replacement must, however, be done only after
having appropriately symmetrised the classical expression.

For instance, we would obtain the observable associated to the classical expression x · p as

x · p =
1

2

(
x · p+ p · x

)
→ 1

2

(
x̂ · p̂+ p̂ · x̂

)
= − i

2

(
x̂ · ∇+∇ · x̂

)
. (2.2.82)

Though the above example is simple and leads to a unique quantum solution, this is not always the case.
Recall that the fundamental theory is quantum mechanics, so that under certain conditions it tends to an
approximation that we call classical mechanics at the macroscopic scale. The correspondence principle
is only a means to deduce an observable from a limit valid in particular circumstances. It may not be
applicable to complicated cases, and subtle effects that have no classical counterpart cannot be obtained
from this rule.

2.3 The harmonic oscillator
Harmonic oscillators consist of one of the best examples to illustrate the efficiency of describing the
dynamics of a quantum system with Dirac notation. In addition, harmonic oscillators play an important
role both in quantum and classical physics, as they naturally appear when we consider physical systems
described by small-amplitude movements around an equilibrium position. Whereas any system featuring
a linear-restoring force (like a spring, a pendulum or a wave) is a harmonic oscillator, it turns out that
any conservative force behaves that way when the system is considered in a state sufficiently close to
its equilibrium position. In one dimension and in classical physics, the equation of motion driving the
position x(t) of the relevant object reads

d2x(t)

dt2
+ ω2x(t) = 0 , (2.3.1)
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where the quantity ω stands for the angular frequency of the oscillator. This equation describes a simple
harmonic oscillator, which consists of a special case of the more general situation of the driven damped
oscillator, in which a term with a first-order time-derivative must be added to (2.3.1). Since only simple
harmonic oscillators are relevant for quantum field theory, we ignore any potential damping terms in the
study undertaken in this section.

In the present study, we focus on a particle of mass m that evolves in a one-dimensional space close
to a local minimum of its potential energy V (x). We choose this minimum to be at the origin x = 0.
Moreover, we consider an approximate expression for the exact form of the potential, that is valid close
to its minimum and that is given by the harmonic potential

V (x) =
1

2
mω2x2 . (2.3.2)

The frequency ω of the oscillator can in general be related to the second-order derivative of the exact
potential through a Taylor series expansion. Consequently, measurements of the oscillation frequency of
the system provide insights into the exact potential to which the particle is subjected. The dynamics of
the system can be obtained from the classical Hamiltonian H derived from (2.3.1), that is as usual given
by the sum of the particle’s kinetic and potential energies,

H =
p2

2m
+

1

2
mω2x2 , (2.3.3)

where x and p represents the (one-dimensional) position and momentum. To quantise the problem, we
promote the variables x and p to operators, in agreement with the correspondence principle (2.2.81), and
we recall that these two operators satisfy the canonical commutation relation (2.2.20),[

x, p
]
= i . (2.3.4)

The Hamiltonian (2.3.3) is further simplified through the choice of an appropriate normalisation for the
position and momentum operators,

x→
√

x

mω
and p→

√
mω p , (2.3.5)

which keeps the commutation relation (2.3.4) unchanged and yields a rewriting of the Hamiltonian (2.3.3)
as

H =
ω

2

(
p2 + x2

)
. (2.3.6)

The global factor of ω shows that the eigenvalues of the Hamiltonian, that correspond to the possible
values for the energy of the system, will be expressed as some ω-independent factor times ω. The oscillator
frequency is thus analogous to a unit of energy.

The expression (2.3.6) for the Hamiltonian of the system suggests the introduction of a pair non-
Hermitian operators a and a† defined by

a =
1√
2

(
x+ ip

)
and a† =

1√
2

(
x− ip

)
. (2.3.7)

These are traditionally known as the annihilation operator (or lowering operator) and the creation oper-
ator (or raising operator), and they satisfy the commutation relation[

a, a†
]
= 1 . (2.3.8)

Conversely, the x and p operators can be retrieved from the annihilation and creation operators as the
relations (2.3.7) are invertible,

x =
1√
2
(a+ a†) and p = − i√

2
(a− a†) . (2.3.9)

Consequently, any operators that can be written in terms of the x and p operators can always be expressed
in terms of annihilation and creation operators. This is applicable to the Hamiltonian (2.3.3), which
becomes

H = ω
(
a†a+

1

2

)
≡ ω

(
N +

1

2

)
. (2.3.10)
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This form for the Hamiltonian hence introduces the so-called number operator N = a†a. Unlike the
ladder operators a and a†, the operator N is Hermitian so that its eigenvalues are real. Moreover, the set
of operators {1, a, a†, N} forms an algebra. Expression (2.3.10) shows that it is sufficient to quantise N
in order to quantise H, or in other words that energy eigenstates are eigenstates of N .

In order to derive the spectrum of the harmonic oscillator, we first define a normalised state |0⟩ that
is annihilated by the operator a,

a|0⟩ = 0 . (2.3.11)

This state is an eigenvector of N associated with the eigenvalue 0, as well as an eigenvector of H with
the eigenvalue ω/2 that is called the zero-point energy or the energy of the vacuum. Defining a set of
normalised states {|n⟩} such that

|n⟩ ∝
(
a†
)n∣∣0〉 , (2.3.12)

the relation (2.3.8) implies that

N |n⟩ = n|n⟩ , a†|n⟩ =
√
n+ 1|n+ 1⟩ and a|n⟩ =

√
n|n− 1⟩ . (2.3.13)

These last relations can be proved easily by induction (see exercise 2.7), and they are not too complicated
to interpret. The state |n⟩ is an eigenstate of N corresponding to the eigenvalue n and an eigenstate of H
with the eigenvalue (n+1/2)ω. Relative to the zero-point energy, the state |n⟩ corresponds to a situation
in which n quanta of energy ω have been created, remembering that ω also represents, in our notation,
the unit of energy. This property explains the name ‘number operator’ for the operator N . The action
of the operator a lowers the eigenvalue of N by one unit, whereas that of the operator a† raises it by one
unit. In other words, the action of a† on a state |n⟩ consists of the creation of an additional quantum
of energy, while conversely the action of a consists of the annihilation of one of the existing quanta of
energy.

Exercise 2.7. Consider a one-dimensional simple harmonic oscillator.

1. Determine the commutation relation satisfied by the creation and annihilation operators a and
a† from the canonical commutation relation to which the operators x and p obey.

2. Determine the algebra formed by the operators {1, a, a†, N}.
3. Consider a normalised state |0⟩ such that a|0⟩ = 0. Demonstrate by induction that the states

|n⟩ ∝
(
a†
)n|0⟩ satisfy

N |n⟩ = n|n⟩ , a†|n⟩ =
√
n+ 1|n+ 1⟩ and a|n⟩ =

√
n|n− 1⟩ ,

with n being an integer.

In the above discussion, we have implicitly assumed that the spectrum of N is only made of positive
integers. This can be demonstrated by reductio ad absurdum such that the set of states {|n⟩} exhausts
the spectrum of the Hamiltonian H.

Before closing this section, we note that we can derive from the Heisenberg equation of motion (2.2.78)
the way in which the creation and annihilation operators evolve with time. This yields

da

dt
= i
[
H, a] = −iωa and

da†

dt
= i
[
H, a†] = iωa† . (2.3.14)

These equations have a simple solution for the time-dependence of the ladder operators,

a(t) = a(0) e−iωt . (2.3.15)

The properties of the one-dimensional simple harmonic oscillator in quantum mechanics that we have
reviewed in this section can be summarised as follows:
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The dynamics of a one-dimensional harmonic oscillator is governed by the Hamiltonian

H = ω
(
a†a+

1

2

)
, (2.3.16)

where the angular frequency ω can be seen as a unit of energy, i.e. the energy eigenvalues of H are
expressed as some factors of ω. This Hamiltonian involves the creation and annihilation operators
a† and a, that obey to the commutation relation[

a, a†
]
= 1 . (2.3.17)

The spectrum of H is made of the eigenvalues (n+ 1/2)ω, where n stands for any positive integer,
and the eigenvector associated with the eigenvalue (k+1/2)ω is noted by |k⟩. The set of eigenvectors
{|n⟩} satisfies

N |n⟩ = n|n⟩ , a†|n⟩ =
√
n+ 1|n+ 1⟩ and a|n⟩ =

√
n|n− 1⟩ , (2.3.18)

with N = a†a. These properties justify the name number operator, creation operator and annihi-
lation operator for the operators N , a† and a. Their action indeed corresponds to the counting of
the number of quanta of energies associated with a specific state, to the creation of an additional
quantum of energy, and to the annihilation of an existing quantum of energy respectively.

In the Heisenberg picture, the (conjugate) annihilation and creation operators evolve with time as

a(t) = a(0) e−iωt and a†(t) = a†(0) e+iωt . (2.3.19)

Exercise 2.8. In this exercise, we generalise the results derived so far to the three-dimensional
case. We consider an isotropic three-dimensional harmonic oscillator, so that the harmonic frequency
and mass are the same in all three space directions.

1. Write the Hamiltonian governing the dynamics of the system.

2. Demonstrate the system can be separated into three independent harmonic oscillators acting
each in a different direction of space.

3. Study the energy spectrum of this harmonic oscillator and the degeneracy of each eigenvalue.

2.4 Hamiltonians, Lagrangians and actions
The results derived and presented in the two previous sections rely on the Hamiltonian of the system.
This an operator which represents the total energy of the system, and consists of a quantity that is
conserved in physical processes. However, energy is not a Lorentz-invariant quantity as it is only the first
component of the four-momentum (1.3.37) in special relativity. Consequently, whereas non-relativistic
quantum mechanics is traditionally formulated by means of Hamiltonian operators, relativistic mechanics
(and thus QFT) rather relies on Lagrangians. In contrast to Hamiltonians, Lagrangians are manifestly
Lorentz invariant. However they do not represent a conserved quantity.

In this section, we briefly recap the connection between Hamiltonians and Lagrangians in the case
of a non-relativistic system described by a finite set of generalised coordinates. We next generalise
the discussion to the continuous case, and introduce in this way the concept of classical field theory.
Consequently, this section slowly paves the way for QFT and the first simple approach presented in
section 2.5.

Lagrangian mechanics is a formulation of classical mechanics founded on the principle of least action.
It was introduced by the Italian-French mathematician Joseph-Louis Lagrange (1736 – 1813), and it
relies on generalised coordinates {qn} and velocities {q̇n}. In contrast, Hamiltonian mechanics was a
reformulation of Lagrangian mechanics introduced by William Rowan Hamilton (1805 – 1865), and in
which the generalised velocities {q̇n} are replaced with generalised momenta {pn}.
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2.4.1 Lagrangian formulation
We consider a system of n particles that are localised at positions x1(t), . . . ,xn(t) and that evolve over
time with velocities ẋ1(t), . . . , ẋn(t). After accounting for the constraints that are applicable on the
system, only s ≤ 3n coordinates generally turn out to be independent. The number s is thus the minimal
number of coordinates that are needed to characterise the positions of all particles in the system. We
therefore define a set of generalised coordinates q1(t), . . . , qs(t) such that the positions {xn(t)} become
functions of these generalised coordinates and time t,

xi(t) ≡ xi
(
q1(t), . . . , qs(t), t

)
for i = 1, . . . , n . (2.4.1)

Accordingly, we define the generalised velocities q̇1(t), . . . , q̇s(t).

The evolution of the system, or equivalently the manner in how the coordinates {qs(t)} change over
time, can be derived from the principle of least action. This principle, usually credited to Pierre Louis
Maupertuis (1698 – 1759) and Leonhard Euler (1707 – 1783), is a generalisation of the principle governing
light propagation determined by Pierre de Fermat (1607 – 1665) to mechanics. The principle of least
action states that there exists a scalar quantity called the action, a functional S[q] of the generalised
coordinates, that is stationary to first order when the system (smoothly) evolves from the configuration
{qs(t1)} at time t1 to the configuration {qs(t2)} at time t2. In other words, the variation of the action δS
is zero on the path followed by the system in configuration space. The most general form of the action
is given by

S[q] =

∫ t2

t1

dt L
(
q(t), q̇(t), t

)
≡
∫ t2

t1

dt L
(
q1(t), . . . , qs(t), q̇1(t), . . . , q̇s(t), t

)
, (2.4.2)

where the function L(q(t), q̇(t), t) is the Lagrangian of the system. From now on, we adopt a notation
in which q(t) stands for the entire set of generalised coordinates {qs(t)}, and q̇(t) stands for the entire
set of generalised velocities {q̇s(t)}. In principle, the Lagrangian L could also include a dependence on
higher-order time-derivatives of the coordinates q. Such a possibility can nevertheless be avoided by
extending the number of generalised coordinates, the additional coordinates being mapped to higher-
order time-derivatives of other coordinates. The functional form of the Lagrangian L as introduced in
(2.4.2) (in which L only depends on the coordinates q and their first-order derivatives q̇) is thus general.

The minimisation of the action (2.4.2) leads to a system of second-order ordinary differential equations,

∂L
(
q, q̇, t

)
∂qi

− d

dt

(
∂L
(
q, q̇, t

)
∂q̇i

)
= 0 for i = 1, . . . , s , (2.4.3)

in which the time-dependence of the coordinates and velocities has been omitted to simplify the notation.
These equations, known as Euler-Lagrange equations, represent the equations of motion of the system,
and their solution provides a description of the evolution of the system in coordinate space.

The form of Lagrangian can be more precisely determined from Newton’s laws. It turns out that it
is given by the difference between the kinetic energy of the system T (that depends in full generality on
both the generalised coordinates q(t) and velocities q̇(t), as well as on time), and on its potential energy
V (that only depends on the generalised coordinates q(t) and time),

L
(
q, q̇, t

)
= T

(
q, q̇, t

)
− V

(
q, t
)
. (2.4.4)

The transition to classical field theory is made by considering the limit in which the discrete set
of generalised coordinates {qs(t)} becomes continuous. Instead of considering n positions in space as
in (2.4.1), we associate to each point x in space a dynamical variable, or a ‘coordinate depending on
time’,

ϕx(t) ≡ ϕ(t,x) . (2.4.5)

The position x hence labels the generalised coordinates ϕx(t). This continuous set of dynamical variables
is called a classical field, and it can be seen as a function ϕ(t,x) of the four space-time coordinates. This
contrasts with the example above describing the motion of n particles. The position variable x does
not depend on time anymore, and it therefore does not describe any motion at all. The field represents
instead some physical quantity (like temperature or any given density) that has a value for each point in
space, and that changes over time.
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Similarly, the path that the system follows in configuration space must now be seen as the manner
in which the value of the field at each point in space evolves with time, the field being the dynamical
variable. As such, the path followed by the system is determined by a function of the values of the field
and of all its first-order derivatives. The time coordinate no longer plays any special role relative to the
position coordinates x.

By analogy with (2.4.2), we introduce the Lagrangian density L, a function of the field and of its
first-order derivatives,

L
(
ϕ, ∂µϕ, x

)
≡ L

(
ϕ(t,x), ϕ̇(t,x),∇ϕ(t,x), t,x

)
. (2.4.6)

In the notation used in this expression, we omitted the arguments of the field and of its first-order
derivatives, ϕ ≡ ϕ(x) and ∂µϕ ≡ ∂µϕ(x). Moreover, we have grouped the different relevant objects
into four-vectors, i.e. x ≡ xµ = (t,x) and ∂µϕ(x) ≡ (ϕ̇(x),−∇ϕ(x)). However, we still consider a non-
relativistic situation so that four-vectors are only used to simplify the notation. The action is defined as
a time-integral of the Lagrangian, as in (2.4.2). Introducing the Lagrangian density L, it can be rewritten
as a space-time integral,

S[ϕ] =

∫ t2

t1

dt L(t) =

∫
Ω

d4x L
(
ϕ, ∂µϕ, x

)
, (2.4.7)

where Ω stands for the space-time volume enclosing the system. In general, this volume is taken as the
entire space, Ω ≡ R3.

The principle of least action states that the field evolves from one configuration at t = t1 to another
configuration at t = t2 according to a ‘path’ ϕ(x) along which the action is an extremum (i.e. the first-
order variational derivative of the action δS = 0). In this case, a configuration corresponds to a setup
in which the values of the field are known for all points in space. In practice, the classical equations
of motion are derived from infinitesimal variations of the field and the condition that the corresponding
variation of the action vanishes,

ϕ→ ϕ+ δϕ and δS = 0 . (2.4.8)

This has, however, to be considered together with the assumption that the field falls off to zero when
approaching the boundaries of the integration domain. Technically, such an assumption allows us to
ignore the integration of any total derivative when handling the action. With these considerations in
mind, we can deduce a generalised version of the Euler-Lagrange equations (2.4.3) valid in the continuous
case,

∂L
∂ϕ

− ∂µ
∂L

∂(∂µϕ)
= 0 . (2.4.9)

We consider a scalar field ϕ(x) = ϕ(t,x) describing the evolution over time of a physical quantity
that has values at each point in space. In the Lagrangian formalism, the dynamics of the system
is governed by a Lagrangian density L ≡ L(ϕ, ∂µϕ, x) depending on the field ϕ and its first-order
derivatives ∂µϕ. The equations of motion associated with the system are Euler-Lagrange equations,

∂L
∂ϕ

− ∂µ
∂L

∂(∂µϕ)
= 0 , (2.4.10)

where the arguments of the Lagrangian density have been omitted for simplicity. In principle the
Lagrangian density could explicitly depend on the space-time coordinates x, though such a situation
will not be considered in these notes.

In general, most Lagrangian densities associated with theories useful for phenomenology depend on
multiple fields, and those fields can be scalar fields (like in the example above) or fields of another nature
(fermionic fields, vector fields, etc.). The generalisation to such a case is straightforward. The equations
of motion dictating the dynamics of the system then correspond to a set of coupled Euler-Lagrange
equations that relate the evolutions of the different fields.

From now on, the ‘Lagrangian density’ L will simply be called the ‘Lagrangian’, as is traditionally
done in high-energy physics in particular, and in field theory in general.
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Exercise 2.9. This exercise is dedicated to the proof that Euler-Lagrange equations originate
from the principle of least action.

1. Consider a physical system described by a set of generalised coordinates {qs(t)} and velocities
{q̇s(t)}, and study its evolution from its configuration {qs(t1)} at a time t1 to its configuration
{qs(t2)} at a time t2. Assuming an infinitesimal variation of the coordinates qi → qi + δqi
(for i = 1, . . . , s) relative to the path chosen by the system to evolve, show that enforcing the
action S to be an extremum (such that δS = 0) leads to Euler-Lagrange equations (2.4.3).

2. Demonstrate that the evolution of a scalar field ϕ(x) is driven by the Euler-Lagrange equa-
tions (2.4.10). In this case consider the variation of the action δS = 0 for an infinitesimal
variation ϕ(x) → ϕ(x) + δϕ(x) of the field. This variation δϕ has to be considered relative
to the field values along the path chosen by the system when it evolves, and along which the
action is an extremum.

2.4.2 Hamiltonian formulation
In the Lagrangian formalism described in section 2.4.1, a system with s degrees of freedom is described
through s generalised coordinates q ≡ {qs} and s associated generalised velocities q̇ ≡ {q̇s}, the time-
dependence of the different quantities being omitted for simplicity. In the Hamiltonian formulation of
classical mechanics, the velocities are traded for generalised momenta {ps} defined by

pi ≡
∂L
(
q, q̇, t

)
∂q̇i

for i = 1, . . . , s , (2.4.11)

where L(q, q̇, t
)

stands for the Lagrangian of the system. Inserting this definition in the Euler-Lagrange
equations (2.4.3), we obtain

ṗi ≡
∂L
(
q, q̇, t

)
∂qi

for i = 1, . . . , s . (2.4.12)

The Hamiltonian H is defined by

H =

s∑
i=1

piq̇i − L
(
q, q̇, t

)
. (2.4.13)

Its derivatives lead, after treating the coordinates q ≡ {qs} and the associated momenta p ≡ {ps} as
independent variables, to the so-called Hamilton’s equations,

q̇i =
∂H(q, p, t)

∂pi
and ṗi = −∂H(q, p, t)

∂qi
for i = 1, . . . , s . (2.4.14)

This pair of equations shows that instead of having to handle a system of second-order differential equa-
tions (i.e. Euler-Lagrange equations), as enforced by the Lagrangian formulation of classical mechanics,
the Hamiltonian formalism involves a system of differential equations that is twice the number, but with
equations that have the advantage of being only first order.

It can be shown that Lagrangian’s and Hamiltonian’s equations are related through a Legendre trans-
formation, and that the Hamiltonian corresponds to the total energy of the system. It is thus given by
the sum of the kinetic energy and the potential energy of the system,

H
(
q, p, t

)
= T

(
q, p, t

)
+ V

(
q, t
)
. (2.4.15)

One particularity of the Hamiltonian formalism can be noted when we consider a general function
f(q, p, t) of the coordinates, the momenta and time. The total time-derivative of this function is given by

df

dt
=

s∑
i=1

(
∂f

∂qi
q̇i +

∂f

∂pi
ṗi

)
+
∂f

∂t
=

s∑
i=1

(
∂f

∂qi

∂H

∂pi
− ∂f

∂pi

∂H

∂qi

)
+
∂f

∂t
, (2.4.16)

where all dependence of the variables has again been omitted for simplicity. The second equality origi-
nates from (2.4.14), and it involves a sum that is called the Poisson bracket of the function f and the
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Hamiltonian H. We can observe that Hamilton’s equations can be rewritten in a more symmetric way
by means of Poisson brackets,

q̇i =
{
qi, H} and ṗi =

{
pi, H} for i = 1, . . . , s . (2.4.17)

In general, Poisson brackets do not necessarily involve the Hamiltonian. The Poisson bracket {f, g} of
two arbitrary functions f(q, p, t) and g(q, p, t) can be defined as

{
f, g
}
=

s∑
i=1

(
∂f

∂qi

∂g

∂pi
− ∂f

∂pi

∂g

∂qi

)
. (2.4.18)

Poisson brackets are antisymmetric, linear and they additionally satisfy the properties{
fg, h

}
= f

{
g, h
}
+
{
f, g
}
h and

{
f,
{
g, h
}}

+
{
g,
{
h, f

}}
+
{
h,
{
f, g
}}

= 0 , (2.4.19)

for any three functions f(q, p, t), g(q, p, t) and h(q, p, t).

Any function f(q, p) of the dynamical variables q and p that does not explicitly depend on time and
that has a zero Poisson bracket with the Hamiltonian H, i.e. any function that satisfies {f,H} = 0, is a
constant of motion. Moreover, ‘fundamental’ Poisson brackets read{

qi, qj
}
=
{
pi, pj

}
= 0 ,

{
pi, qj

}
= δij for i, j = 1, . . . , s . (2.4.20)

These last relations could be equivalently written by making use of standard commutators to which
Poisson brackets are equivalent in this case,[

qi, qj
]
=
[
pi, pj

]
= 0 ,

[
pi, qj

]
= δij for i, j = 1, . . . , s . (2.4.21)

As in the Lagrangian formalism, the above description can be generalised to the continuous case via
the introduction of a field ϕ(x). In the discrete case, the velocities q̇(t) are traded for the conjugate
momenta p(t). The treatment of the continuous case is analogous: the first-order time-derivative of the
field ϕ̇(x) is traded for the so-called momentum density π(x) conjugate to ϕ(x). We begin with the
introduction of the definition of a Hamiltonian density H, similar to what was done for the Lagrangian
density introduced in (2.4.7). This density is related to the Hamiltonian H by integration over space,

H(t) =

∫
Ω

d3x H(ϕ, ∂µϕ, x
)
, (2.4.22)

where Ω stands for the (possibly infinite) volume enclosing the system studied. The definition of the
density H is given by the generalisation to the continuous case of the relation (2.4.13),

H
(
ϕ, ∂µϕ, x

)
= π(x) ϕ̇(x)− L

(
ϕ, ∂µϕ, x

)
. (2.4.23)

As in the discrete case, the Lagrangian (density) L and the Hamiltonian (density) H are related through
a Legendre transform. We still need to provide a definition of the momentum density π(x). This is
achieved analogously to (2.4.11),

π(x) ≡
∂L
(
ϕ, ∂µϕ, x

)
∂ϕ̇

. (2.4.24)

The commutation relations (2.4.21) associating a field with its conjugate momentum needs also to be
generalised. This leads to the so-called equal-time commutation relations[

ϕ(t,x), ϕ(t′,y)
]∣∣∣
t=t′

=
[
π(t,x), π(t′,y)

]
|t=t′ = 0 ,

[
ϕ(t,x), π(t′,y)

]
|t=t′ = iδ(3)(x− y) . (2.4.25)

In these expressions, we have explicitly indicated the dependence on the space-time coordinates to high-
light the fact that all fields and momenta appearing in the commutators must be evaluated at a given
time t′ = t.

In order to assess the dynamics of the system, we make use of Hamilton’s equations for the field and
its conjugate momentum, which generalises (2.4.14) to the continuous case,

ϕ̇ =
∂H
(
ϕ, ∂µϕ, x

)
∂π

and π̇ = −
∂H
(
ϕ, ∂µϕ, x

)
∂ϕ

. (2.4.26)
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We consider a scalar field ϕ(x) = ϕ(t,x) describing the evolution over time of a physical quantity
that has values at each point in space, and the Lagrangian density L ≡ L(ϕ, ∂µϕ, x) embedding the
dynamics of the system. In the Hamiltonian formalism, the associated equations of motion involve
the field ϕ(x) and its conjugate momentum π(x) defined by

π(x) ≡
∂L
(
ϕ, ∂µϕ, x

)
∂ϕ̇

. (2.4.27)

These two quantities satisfy equal-time commutation relations,[
ϕ(t,x), ϕ(t′,y)

]∣∣∣
t=t′

=
[
π(t,x), π(t′,y)

]
|t=t′ = 0 ,

[
ϕ(t,x), π(t′,y)

]
|t=t′ = iδ(3)(x− y) , (2.4.28)

and they are related to the Hamiltonian H through Hamilton’s equations,

ϕ̇ =
∂H
(
ϕ, ∂µϕ, x

)
∂π

, π̇ = −
∂H
(
ϕ, ∂µϕ, x

)
∂ϕ

. (2.4.29)

Once again, the previous discussion can easily be extended to a setup in which several fields are
involved, the commutation relations (2.4.28) being imposed on each field in the theory separately.

2.4.3 Noether’s theorem

Field transformations leaving the action S[ϕ] of the system invariant, up to a surface term (as such a term
does not impact the derivation of the equations of motion, see exercise 2.9), are called symmetries of the
system. Furthermore, when such a symmetry transformation depends continuously on some parameters,
it is additionally said to be a continuous symmetry. Continuous symmetries play a special role in field
theory as they can be associated with conservation laws, and in particular with conserved charges and
currents.

To highlight this point, we consider a theory involving a set of n fields {ϕn}, which also allows us
to illustrate a more general setup than that considered in the previous subsections (in which we have
systematically considered setups with a single field). We focus on field transformations associated to a
continuous symmetry and depending on an infinitesimal parameter ε such that

ϕi(x) → ϕi(x) + δεϕi(x) = ϕi(x) + ε ∆ϕi(x) for i = 1, . . . , n . (2.4.30)

We emphasise that in this expression, ∆ϕi represents a small variation of the field ϕi, and that the
requirement that the transformation parameter ε is infinitesimal enables us to write the field transforma-
tion laws as above. The transformation being a symmetry, we can further impose that the action S[ϕ]
is invariant (up to a surface term). Consequently, the variation of the Lagrangian L must be equal to a
total derivative such that at first order

L → L+ δεL = L+ ε ∂µJ µ , (2.4.31)

where J µ
ε stands for some function of the fields and their derivatives, yet to be determined. Alternatively,

the variation of the Lagrangian can be computed explicitly from the variation of the fields,

δεL =

n∑
i=1

[
∂L
∂ϕi

δεϕi +
∂L

∂(∂µϕi)
δε(∂µϕi)

]
. (2.4.32)

Integrating this equality by parts, we can rewrite it as

δεL =

n∑
i=1

[(
∂L
∂ϕi

− ∂µ
∂L

∂(∂µϕi)

)
δεϕi

]
+ ∂µ

(
n∑
i=1

∂L
∂(∂µϕi)

δεϕi

)
. (2.4.33)

This equation holds both in the off-shell case, namely when the equations of motion of the system are
not satisfied and for a field configuration in which the action is not extremal, and in the on-shell case
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when the equations of motion hold. In this last case, the first term of (2.4.33) vanishes by virtue of
Euler-Lagrange equations, and (2.4.33) simplifies to

δεL = ∂µ

(
n∑
i=1

∂L
∂(∂µϕi)

δεϕi

)
. (2.4.34)

Comparing this results with (2.4.31) and recalling that we assumed that δεϕi = ε ∆ϕi, we can define
a conserved current Jµ, independent of the transformation parameter ε. This constitutes Noether’s
theorem.

Noether’s theorem – If a Lagrangian L depending on a set of fields {ϕn} features a continuous
symmetry, then there exists a conserved current Jµ when the equations of motion are satisfied. This
current is defined by

Jµ =

n∑
i=1

∂L
∂(∂µϕi)

∆ϕi − J µ with ∂µJ
µ = 0 . (2.4.35)

Here, ε∆ϕi represents the (infinitesimal) variation of the field ϕi under an infinitesimal symme-
try transformation of parameter ε, and the quantity J µ is determined from the variation of the
Lagrangian under this transformation,

L → L+ ε ∂µJ µ . (2.4.36)

The current Jµ = (J0,J) is said to be ‘conserved’ because the associated total charge Q defined by the
integral over space of its temporal component,

Q =

∫
R3

d3x J0 , (2.4.37)

does not vary with time. We indeed have

dQ

dt
=

∫
R3

d3x
dJ0

dt
=

∫
R3

d3x ∇ · J = 0 , (2.4.38)

the last equality stemming from ∂µJ
µ = 0.

As an (important) example, consider the case of a space-time translation (1.4.10) of an infinitesimal
parameter εµ. Under such a transformation, the coordinates transform as

xµ → x′µ = xµ − εµ , (2.4.39)

the minus sign being conventional in light of the definitions to come. In addition, a scalar field ϕ(x)
transforms in a way similar to (1.4.11),

ϕ(x) → ϕ(x) + εµ∂µϕ(x) . (2.4.40)

The Lagrangian L of the system being a scalar quantity as well, we similarly get

L → L+ εµ∂µL = L+ εν∂µ
(
δµν L

)
. (2.4.41)

This expression explicitly involves the identity δµν so that its form matches that of (2.4.36). There
is, however, a notable difference originating from the fact that an infinitesimal space-time translation
involves four infinitesimal parameters εν = (ε0, ε1, ε2, ε3). Consequently, we can determine four quantities
J µ

ν = (J µ
0,J µ

1,J µ
2,J µ

3), one for each of the transformation parameters associated with the different
values of the index ν. These four quantities can be compactly written in a tensorial form,

J µ
ν = δµν L . (2.4.42)

This provides an expression for the second term contributing to the four conserved currents in (2.4.35).
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On the other hand, (2.4.40) shows that the infinitesimal variations of the field ϕ associated with each of
the four parameters εν are given by ∆νϕ = ∂νϕ. This allows for the determination of the first contribution
to the conserved currents in (2.4.35),

∂L
∂(∂µϕ)

∆νϕ =
∂L

∂(∂µϕ)
∂νϕ . (2.4.43)

The two relations (2.4.42) and (2.4.43) allow us to write the four conserved currents in a tensorial form
T µ

ν ,

T µ
ν =

∂L
∂(∂µϕ)

∂νϕ− δµν L . (2.4.44)

The quantity T µ
ν is called the (canonical) energy-momentum tensor, or alternatively the stress-energy

tensor.

An important component of this tensor is its element T 00 (with two upper indices), that allows for
the derivation of the conserved charge associated with time translations once integrated over space. The
quantity T 00 indeed corresponds to the Hamiltonian density or energy density of the system,

T 00 =
∂L
∂ϕ̇

ϕ̇− L = H , (2.4.45)

where the last equality stems from (2.4.23) and (2.4.24). Noether’s theorem therefore tells us that the
invariance of physics under time translations is the reason why energy is conserved. The time at which
an experiment is conducted does not impact the laws of physics.

Three other important components of the energy-momentum tensor consist of its elements T 01, T 02

and T 03 (with upper indices). When integrated over space, they provide three conserved charges P 1, P 2

and P 3 that are associated with space translations. We can collectively group these charges in a vector
P = (P 1, P 2, P 3), and they are defined by

P i =

∫
R3

d3x T 0i ⇔ P =

∫
R3

d3x T 0i = −
∫
R3

d3x
∂L
∂(ϕ̇)

∇ϕ = −
∫
R3

d3x π ∇ϕ . (2.4.46)

We naturally associate these charges with the components of the total momentum carried by the field.
Space translations are indeed related to momentum conservation. Noether’s theorem thus provides with
an explanation for momentum conservation: it arises from the fact that the laws of physics are invariant
under space translations.

2.5 A first approach to quantum fields

2.5.1 A Hamiltonian for a multiparticle theory
In this section, we connect special relativity and quantum mechanics within quantum fields, which in-
volves the simple harmonic oscillators presented in section 2.3. To this aim, we start with the simplest
Lorentz-invariant equation of motion, the Klein-Gordon equation, which was the first relativistic quantum
mechanical equation to have been proposed. It was developed following the observation that quantum
mechanics, as briefly summarised in section 2.2, does not satisfy the underlying principles of special
relativity. In particular, the Schrödinger equation (2.2.56) involves a first-order derivative in the time
coordinate and second-order derivatives in the position coordinates. The Schrödinger equation is thus
manifestly not Lorentz invariant. Lorentz transformations indeed mix coordinates of time and space,
which enforces that space and time must be treated similarly.

The Klein-Gordon equation is instead invariant regardless of the choice of inertial frame of reference,
and thus satisfies the underlying principle of special relativity. It can be obtained from a generalised
version of the correspondence principle (2.2.81), in which energy and momentum are treated on equal
footings. Such a joint treatment is imposed by special relativity, as energy E and momentum p are the
components of a single four-vector, the four-momentum pµ = (E,p) defined by (1.3.37). Consequently,
we extend the second relation in (2.2.81) to the four-momentum, and it becomes

pµ ≡

(
E

p

)
→ p̂µ = i∂µ ≡

(
Ê

p̂

)
= i

(
∂
∂t

−∇

)
. (2.5.1)
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The Schrödinger equation (2.2.56) can be obtained from the correspondence principle, once we apply
it to the classical symmetrised Hamiltonian function H that corresponds to the energy of the system.
As mentioned above, in special relativity momentum and energy are grouped into a unique four-vector
whose components satisfy Einstein’s definition of the energy,

p2 = pµpµ = E2 − ||p||2 = m2 , (2.5.2)

where m stands for the mass of a particle of energy E and momentum p. This relation therefore provides
a better starting point to derive a relativistic quantum equation than that provided by the Hamiltonian.
The Klein-Gordon equation for a free particle is precisely obtained in this way. We begin with the above
equation (2.5.2), next promote energy and momentum to operators by means of the correspondence
principle (2.5.1), and finally apply these operators to a state |ψ⟩. This yields

Ê2|ψ⟩ =
(
m2 + ||p̂||2

)
|ψ⟩ ⇔

(
∂2

∂t2
−∆+m2

)
|ψ⟩ =

(
□+m2

)
|ψ⟩ = 0 . (2.5.3)

As expected, the equation derived in the above way describes the dynamics of a single particle of
energy E and momentum p. As already mentioned, this however yields problems as in special relativity
particle-antiparticle pairs can annihilate into energy or other particles and antiparticles, and conversely
energy can be converted to create new particles. The number of particles therefore varies with time, and
this needs to be accounted for. In addition, such a naive derivation starting from (2.5.2) and relying
on (2.5.3) leads to violations of causality. This is best visible from the computation of the propagation
amplitude U(t) for the particle to travel from a position x to a position y in space. The latter can be
derived from (2.2.72) once we match the Hamiltonian with the relativistic energy operator Ê defined in
(2.5.1). This gives

U(t) = ⟨y | e−iÊt | x⟩ = ⟨y | e−i
√
m2+||p̂||2 t | x⟩ , (2.5.4)

which can be further simplified to

U(t) =

∫
R3

d3p ⟨y | e−i
√
m2+||p̂||2 t | p⟩ ⟨p|x⟩

=
1

(2π)3

∫
R3

d3p e−i
√
m2+||p||2 t e−ip·(x−y)

=
1

2π2

∫ ∞

0

dp p
sin ||x− y||
||x− y||

e−i
√
m2+p2 t .

(2.5.5)

In these relations, we have used for the first equality the completeness relation (2.2.41), whereas the
second equality relies on the projection (2.2.42) of |p⟩ states onto |x⟩ states and on the definition of the
momentum states |p⟩. The third equality is obtained after angular integration. This last integral can be
written in terms of Bessel functions, and it can be shown that it is non-zero even for space-like separated
points x and y. This consequently violates causality as the propagation speed must be bounded from
above by the speed of light.

Quantum field theory solves this problem in the following way. We start again from (2.5.3), but we
assume this time that it is applied to a field ϕ(x) which we consider to be real for simplicity,(

∂2

∂t2
−∆+m2

)
ϕ(x) =

(
□+m2

)
ϕ(x) = 0 . (2.5.6)

The more general case of a complex scalar field will be addressed in chapter ??. The equation that has
emerged from the simplest relativistic equation, namely the total energy definition (2.5.2), corresponds to
the equation of motion dictating the dynamics of any free scalar field. It thus describes particles belonging
to the trivial representation of the Poincaré group (see section 1.4). Other possibilities are discussed in
chapter ??. Equation (2.5.6) is easily solved once we recognise that it consists of the equation of a plane
wave. Its solution for a specific value of the momentum p reads

ϕ(x) = ap(t) e
ip·x , (2.5.7)

where the coefficient ap(t) is constrained such that(
∂2

∂t2
+ p · p+m2

)
ap(t) = 0 . (2.5.8)
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The coefficient ap(t) consequently satisfies the equation of motion (2.3.1) of a simple harmonic oscillator
of frequency ωp =

√
p · p+m2. We now have all the ingredients to write the general solution of (2.5.6).

It is given by an integral over all possible values for the momentum p,

ϕ(x) =

∫
R3

d3p

(2π)3

(
ap(t) e

ip·x + a∗p(t) e
−ip·x

)
, (2.5.9)

in which the time-dependent coefficients ap(t) obey (2.5.8). These coefficients are complex-valued scalar
functions, and the fact that we consider a real field ϕ(x) imposes that the second term makes use of
coefficients a∗p(t) conjugate to ap(t). In the case of a complex field, the coefficients a∗p(t) are simply
replaced by independent quantities b∗p(t), as described in chapter ??.

The above solution (2.5.9) can be interpreted as a Fourier decomposition of the field ϕ(x) into plane
waves, in which each Fourier mode is an independent harmonic oscillator. Such an interpretation justifies
the introduction of the conventional factor of 1/(2π)3 in the integral, that is included in our definition of
Fourier transforms. Equation (2.5.8) dictates the time-dependence of the conjugate functions ap(t) and
a∗p(t), which thus reads

ap(t) = ap e
−iωpt . (2.5.10)

In this last expression, the coefficients ap are constants, the time-dependence being entirely embedded in
the exponential factor. The expression (2.5.9) for the field ϕ(x) can thus be rewritten in the form,

ϕ(x) =

∫
R3

d3p

(2π)3

(
ap e

−ip·x + a∗p e
ip·x
)
, (2.5.11)

where the scalar product in the exponential is now the scalar product of two four vectors, the position
four-vector xµ and the four-momentum pµ. Moreover, the coefficients ap and their conjugate counterparts
a∗p are time-independent complex constants, and we have one of such constant coefficient for each value
of the momentum p.

We are now ready to quantise the field (2.5.11) in a similar fashion as what has been done for the
harmonic oscillator in section 2.3. In practice, this is achieved through the introduction of an independent
pair of annihilation and creation operators ap and a†p for each Fourier mode (of wave vector p). Those
operators being independent, they satisfy the commutation relations[

ap , aq
]
=
[
a†p , a

†
q

]
= 0 and

[
ap , a

†
q

]
= (2π)3 δ(3)(p− q) . (2.5.12)

The factor of (2π)3 appearing in the last relation originates from the convention used for the Fourier
transform in (2.5.9). The three-dimensional delta function δ(3)(p−q) is, however, not Lorentz invariant.
Embedding the momenta p and q in the four-momenta p = (Ep,p) and q = (Eq,q), we can show that a
good choice of a Lorentz-invariant quantity could be Ep δ(3)(p − q). This observation suggests that we
modify the normalisation (2.5.11) of the classical field ϕ(x) so that its quantum version would read, also
in analogy with the rescaling (2.3.5),

ϕ(x) =

∫
R3

d3p

(2π)3
1√
2ωp

(
ap e

−ip·x + a†p e
ip·x
)
, (2.5.13)

since the oscillator frequency ωp =
√

p · p+m2 consists of the energy of the oscillator associated to each
mode. In addition, we can note that we have included an extra explicit factor of 1/

√
2 in the integral. This

choice can be mapped to the factor of 1/
√
2 included in the expression (2.3.9) of the position operator

in terms of creation and annihilation operators. As shown below (in exercise 2.10), such a normalisation
yields the standard equal-time commutation relations (2.4.28).

The Hamiltonian formulation requires us to associate a conjugate momentum π(x) defined by (2.4.24)
to the field ϕ(x). It can be shown that the Klein-Gordon equation (2.5.6) originates, by means of Euler-
Lagrange equations (2.4.10), from the Klein-Gordon Lagrangian

LKG =
1

2
∂µϕ∂

µϕ− m2

2
ϕ2 . (2.5.14)

The conjugate momentum is thus given by

π(x) =
∂LKG

(
ϕ, ∂µϕ, x

)
∂ϕ̇

≡
∂LKG

(
ϕ, ∂µϕ, x

)
∂(∂0ϕ)

= ϕ̇ . (2.5.15)
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The definition (2.5.13) of the field ϕ(x) thus yields

π(x) = −i
∫
R3

d3p

(2π)3

√
ωp

2

(
ap e

−ip·x − a†p e
ip·x
)
. (2.5.16)

This definition is analogous to the expression (2.3.9) of the operator p in terms of annihilation and creation
operators in the case of the simple harmonic oscillator, once taken together with the rescaling (2.3.5).
With the chosen normalisation for the field and conjugate momentum, we can show that the equal-time
commutation relations that should be satisfied actually hold,[

ϕ(x) , ϕ(y)
]
=
[
π(x) , π(y)

]
= 0 and

[
ϕ(x) , π(y)

]
= iδ(3)(x− y) , (2.5.17)

for xµ = (t,x) and yµ = (t,y). We emphasise that the time appearing in the two four-vectors is the
same.

Exercise 2.10. Consider a real scalar (quantum) field ϕ(x) whose dynamics are governed by the
Klein-Gordon Lagrangian (2.5.14).

1. Show that the equation of motion that can be derived from this Lagrangian is the Klein-Gordon
equation. The proof should rely on the Euler-Lagrange equations (2.4.10).

2. Verify that such a scalar field and its conjugate momentum π(x), whose expressions in terms
of creation and annihilation operators are given by (2.5.13) and (2.5.16) respectively, satisfy
the canonical equal-time commutation relations (2.5.17).

3. Derive the Hamiltonian H0 of the system from its definition (2.4.23) and relation (2.4.22).
Compare this with the case of the simple harmonic oscillator.

From the respective expressions of the fields ϕ(x) and its conjugate momentum π(x) in terms of creation
and annihilation operators (2.5.13) and (2.5.16), we can determine an expression for the Hamiltonian H0

of the free real scalar field (see also exercise 2.10). We obtain

H0 =

∫
R3

d3p

(2π)3
ωp

(
a†pap +

1

2

[
ap , a

†
p

])
. (2.5.18)

This Hamiltonian consists of a straightforward generalisation of the Hamiltonian (2.3.16) to an infinite
set of harmonic oscillators. The second term can be interpreted as a sum over all modes of the zero-
point energies ωp/2, and it is formally infinite by virtue of the non-zero nature of the commutator of
an annihilation operator and a creation operator associated with the same momentum p. This is not
surprising as we consider an infinite set of oscillators per volume element together with an infinite volume
in space. Physically, such an infinite expression cannot be measured experimentally since experiments
only measure energy differences from the ground state, as for potential energies in classical mechanics.
The second term of (2.5.18) can thus be ignored, although there are situations, not covered in these notes,
in which this term matters. This omission can be seen as a renormalisation procedure in which a constant
is added to the Hamiltonian to compensate for the zero-point energy, and that makes no difference in
any physical process.

We next define the ground state |0⟩ of the theory, that consists of a normalised state that is annihilated
by all annihilation operators ap. The properties of these states are thus

⟨0|0⟩ = 1 and ap|0⟩ = 0 ∀p ∈ R3 . (2.5.19)

Once the infinite constant appearing in the Hamiltonian H0 is dropped, it turns out that this state has a
zero energy E = 0. As in section 2.3, the rest of the spectrum is built from the action of creation operators
on the ground states. For instance, the state a†pa†q . . . |0⟩ would be an eigenstate of H0 corresponding to
the eigenvalue ωp + ωq + . . . As in the case of the harmonic oscillator, the full set of states built in this
way exhausts the spectrum.
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Second quantisation – We consider a set of particles of mass m that are of the same particle
species. Whereas each particle has a different energy E and momentum p, these two quantities
always satisfy the definition of energy according to Einstein: E2 = ω2

p = ||p||2 +m2.

By virtue of special relativity, we need to describe the dynamics of these particles through a mul-
tiparticle theory in which energy can be converted into particle-antiparticle pairs, and particles
and antiparticles can annihilate. The Hamiltonian associated with such a theory can be obtained
through the quantisation of a classical field.

In this subsection, we have taken the example of a real scalar field ϕ(x). The quantisation procedure,
known as second quantisation, consists of starting with a classical theory for the field ϕ(x), solving
the associated equations of motion (in our example, the Klein-Gordon equation), and writing the
field ϕ(x) as the most general solution to these equations (in our example, a Fourier decomposition
into plane waves). The field is next promoted to an operator such that the field and its conjugate
momentum π(x) satisfy equal-time commutation relations.

Through this procedure, we have obtained a field and an associated conjugate momentum given by

ϕ(x) =

∫
R3

d3p

(2π)3
1√
2ωp

(
ap e

−ip·x + a†p e
ip·x
)
,

π(x) = − i

∫
R3

d3p

(2π)3

√
ωp

2

(
ap e

−ip·x − a†p e
ip·x
)
.

(2.5.20)

Both quantities involve an infinite set of creation and annihilation operators a†p and ap, each such
pair of operators being associated with a specific value of the momentum p.

2.5.2 The physical interpretation
This subsection is dedicated to the physical interpretation of the eigenstates of the Hamiltonian (2.5.18).
We have so far defined the ground state of the theory, |0⟩, that consists of a normalised state whose
associated energy is zero. The action of any of the annihilation operators of the theory on this state, that
is also known as the vacuum, is given by (2.5.19): the vacuum is annihilated by any of the annihilation
operators.

We now consider a one-particle state that is defined from the action of one of the creation operators
of the theory, a†p, on the vacuum,

a†p|0⟩ . (2.5.21)

As already mentioned, this consists of an eigenstate of the Hamiltonian H0 with energy E = ωp. In order
to further characterise this state, we estimate the action of the total momentum operator (2.4.46) on it,

P a†p|0⟩ =−
∫
R3

d3x π(x) ∇ϕ(x) a†p|0⟩

=− 1

2

∫
R3

d3x

∫
R3

d3q

(2π)3

∫
R3

d3q′

(2π)3

√
ωq

ωq′
q′
(
aq e

−iq·x − a†q e
iq·x
)

×
(
aq′ e−iq

′·x − a†q′ e
iq′·x

)
a†p|0⟩

=− 1

2

∫
R3

d3x

∫
R3

d3q

(2π)3

∫
R3

d3q′

(2π)3

√
ωq

ωq′
q′ ei(q+q′)·x

(
aq e

−iωqt − a†−q e
iωqt

)
×
(
aq′ e−iωq′ t + a†−q′ e

iωq′ t
)
a†p|0⟩ .

(2.5.22)

To derive the second equality, we have employed the definitions (2.5.20) of the field and its conjugate
momentum. For the third equality we enforced the change of variables q → −q and q′ → −q′ in terms
involving positive exponentials, and we recall that ωq = ω−q. Such a change of variables manifestly
shows that the integral over the position space corresponds to the Fourier transform of the exponential.
We recall that in our normalisation conventions for the Fourier transform, it is given by

δ(3)(p) =
1

(2π)3

∫
R3

d3x e−ip·x . (2.5.23)
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This further allows for the evaluation of one of the integrals over the momenta. We get

P a†p|0⟩ =
1

2

∫
R3

d3q

(2π)3
q
(
aq e

−iωqt − a†−q e
iωqt

)(
a−q e

−iωqt + a†q e
iωqt

)
a†p|0⟩ = p a†p|0⟩ , (2.5.24)

the last equality originating from the symmetry properties of the integrand and the commutation rela-
tions (2.5.12). This shows that the state a†p|0⟩ corresponds to a state with momentum p. Furthermore,
its energy ωp is always positive and it satisfies

E = ωp =
√

||p||2 +m2 . (2.5.25)

This precisely corresponds to the energy, according to Einstein, of a particle of mass m and momentum
p. We therefore say that the state a†p|0⟩ ‘contains one particle of mass m and momentum p’.

Exercise 2.11. Consider a real scalar field ϕ(x) and its conjugate momentum π(x), and a vacuum
state denoted by |0⟩. Demonstrate in detail that

P a†p|0⟩ = p a†p|0⟩ ,

where P stands for the total momentum operator and a†p the creation operator associated with the
specific value p of the momentum.

With the derivation of (2.5.24), we have shown that the states |p⟩ which represents a single particle of
momentum |p) and the state a†p|0⟩ are proportional to each other. Keeping Lorentz invariance in mind,
we define

|p⟩ =
√

2ωp a
†
p|0⟩ . (2.5.26)

The choice of such a prefactor
√
2ωp is motivated by the fact that it yields, for two states |p⟩ and |q⟩,

⟨p|q⟩ = 2
√
ωpωq ⟨0 | apa†q | 0⟩ = 2ωp (2π)3 δ(3)(p− q) . (2.5.27)

The energy dependence in (2.5.26) guarantees that the scalar product of two states is Lorentz-invariant,
whereas the factor of two is convenient to match that included in (2.5.20). Subsequently, the completeness
relation shown in (2.2.41) has to be modified too. It now reads, for one-particle states |p⟩,∫

R3

d3p

(2π)3
1

2ωp
|p⟩⟨p| = 1 . (2.5.28)

With the definition (2.5.26), we are ready to evaluate the action of the field operator (2.5.20) on the
vacuum |0⟩. This gives

ϕ(x)|0⟩ =
∫
R3

d3p

(2π)3
1

2ωp
eip·x |p⟩ . (2.5.29)

Such a result can be seen as a linear combination of an infinite set of one-particle states, each having a
definite momentum p. Furthermore, projecting this expression on the bra ⟨q| and using (2.5.27) leads to

⟨q|ϕ(x)|0⟩ = eiq·x . (2.5.30)

This can be interpreted analogously to (2.2.42), after a generalisation to the case of space-time. Through
the introduction of |x⟩ ≡ ϕ(x)|0⟩, we conclude that the quantity ⟨x|p⟩ consists of the space-time repre-
sentation of the one-particle state |p⟩.

The action of a scalar field ϕ(x) on the vacuum |0⟩, i.e. ϕ(x)|0⟩, corresponds to the creation of a
particle at position x and time t.
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We can perform a similar exercise on a state defined by the successive application of two creation
operators,

a†pa
†
q|0⟩ . (2.5.31)

This results in the creation of a two-particle state with total energy ωp + ωq and momentum p+ q. As
all creation operators commute (as shown in (2.5.12)), the two particles are freely interchangeable. In
other words, we have

a†pa
†
q|0⟩ = a†qa

†
p|0⟩ . (2.5.32)

Particles whose dynamics are described by the Klein-Gordon equation therefore obey Bose-Einstein
statistics. Conversely, a single mode of total momentum p can contain arbitrarily many particles. A
given state of specific momentum p and energy E = ω that is constructed by the successive application
of creation operators to the vacuum therefore consists of a linear combination of n-particle states with n
not fixed. In this context, the Hilbert space H suitable to describe the eigenvectors of a single harmonic
oscillator is promoted to a Fock space F that is defined as a direct sum of copies of the single-particle
Hilbert space H,

F =

∞⊕
n=0

Vn =

∞⊕
n=0

H⊗sn = C+H+H⊗s H+ . . . (2.5.33)

In this notation, V0 ≡ C stands for the set of complex scalars and contains the vacuum |0⟩. The first term
in the sum, V1 ≡ H, contains the full set of one-particle states |p⟩ of generic momentum p and positive
energy defined according to special relativity (so that the four components of the four-momentum are
not independent of the particle mass). The following terms Vk (with k ≥ 2) are defined as the symmetric
tensor product of k copies of the Hilbert space H, and a specific term Vk includes states containing k
identical particles.

Second quantisation is a procedure in which an infinite set of quantum mechanical systems are
treated simultaneously within a quantity known as a quantum field. Each of these systems is
associated with a specific value of the momentum p, and it is represented by a harmonic oscillator
of frequency ωp. We interpret the nth excitation |n⟩ of this oscillator as a state containing n particles
of mass m and energy E related through

E = ωp =
√

||p||2 +m2 . (2.5.34)

In QFT a state with total momentum p and total energy E is a combination of multiparticle states
containing an arbitrary number n of particles of momenta {pn} and energies {ωpn

} such that

E =

n∑
i=1

ωpi and p =

n∑
i=1

pi . (2.5.35)

Moreover, (2.5.34) holds for any individual particle.

A QFT state defined as above lives in a Fock space F that is defined as an infinite direct sum of
symmetric tensorial products of the Hilbert spaces H describing one-particle states. Each component
of the QFT state within this sum is therefore associated with a specific number of particles, but this
number is not bounded from above as the sum is infinite. QFT therefore provides the relativistic
multiparticle theory that was needed from the beginning.

The generalisation to a theory describing particles of different types is immediate, the Fock space
being then defined from a sum of copies of all Hilbert spaces associated with the different particle
species.

From the above considerations, we can show that non-relativistic multiparticle quantum mechanics
is retrieved as the low-energy limit of QFT, i.e. when the amount of available energy is both bounded
from above and much smaller than the particle mass. It corresponds to a restricted region of the Fock
space F in which the number of states n is either fixed or bounded from above. Finally, we can also
demonstrate that in QFT, the causality problems arising from particle propagation are solved. This is
further elaborated on in chapter ??.
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2.6 Summary

This chapter provides a first simplified approach to quantum field theory.

Our journey started with the postulates of quantum mechanics. We formulated them using the elegant
and abstract formalism of Dirac, which relies on (rigged) Hilbert spaces. Our discussion additionally
included all mathematical tools necessary for the understanding of these notes, and we particularly
emphasised the momentum and position operators x and p whose eigenstates form a basis of the Hilbert
space. As an example of the application of the postulates of quantum mechanics, we next considered
the quantisation of the simple harmonic oscillator, a quantum system that is central in QFT. In Dirac
notation, the quantisation of the associated classical and non-relativistic problem involves creation and
annihilation operators, allowing to create and annihilate quanta of energy. These operators are crucial
because they also appear in QFT. However, in QFT they are alternatively interpreted as operators
yielding the creation and annihilation of (relativistic) particles of mass m, momentum p and energy
E = ωp =

√
m2 + ||p||2.

The usual non-relativistic formulation of quantum mechanics is, however, not adapted to the relativistic
case. Because of special relativity, mass indeed consists only of one form of energy among others, which
means that particles can annihilate and be created over time. Consequently, the number of particles
in a relativistic system varies with time, and it is clear that such a feature cannot be accounted for
immediately from a non-relativistic quantum mechanical system comprising a fixed number of particles.
In addition, non-relativistic quantum mechanics leads to problems with causality as due to the postulates
of special relativity; propagation in space cannot be faster than light. Quantum fields are the objects
that provide a solution to these problems.

Before moving deeply into the main subject of these notes in the last part of this chapter, we enjoyed
an intermezzo to recapitulate the Lagrangian formulation and Hamiltonian formulation of classical me-
chanics. Here, we considered the description of a system containing a fixed number n of particles localised
at specific positions. Taking the continuous limit with n tending to infinity, the concept of fields and
conjugate momenta emerged from our discussion. We next related them to the Lagrangian and Hamil-
tonian densities that play an important role in classical field theory. This naturally leads us to introduce
the quantity known as the action of the system, and how the associated principle of least action can be
used to derive its evolution over time. Moreover, we provided some details on the consequences of the
symmetries of the action, which leads us to the celebrated Noether’s theorem. As an illustrative appli-
cation, we focused on the derivation of one of the most golden rules of physics: energy and momentum
conservation.

With this in mind, we had all the ingredients to begin a discussion on quantum fields. We began
from the simplest relativistic equation, namely the Klein-Gordon equation. We then derived from it a
consistent definition of a quantum field that solves all problems mentioned above, and that lies at the
heart of a relativistic and quantum multiparticle theory. This field and associated conjugate momentum
are operators given by the expressions

ϕ(x) =

∫
R3

d3p

(2π)3
1√
2ωp

(
ap e

−ip·x + a†p e
ip·x
)
,

π(x) = − i

∫
R3

d3p

(2π)3

√
ωp

2

(
ap e

−ip·x − a†p e
ip·x
)
.

This shows that these two objects consist of a combination of an infinite set of creation and annihilation
operators a†p and ap associated with the creation and annihilation of a particle of mas m, momentum
p and energy ωp at a space-time point x. Through several applications of the field operator to the
vacuum state |0⟩, we can successively build a state containing a specific number of particles k, although
the number of applications of the field operator can be arbitrary large. Alternatively, a QFT state of
definite total momentum ptot and total energy Etot can be seen as the direct sum of all one-particle
state, two-particle state, etc. of the same total energy and momentum. Whereas for any component in
this direct sum the number of particle is fixed, the number of terms included is not bounded from above.
Consequently, the concept of Hilbert spaces inherent to quantum mechanics is promoted to that of a Fock
space.

This chapter, together with the previous one, achieves our presentation of all the building blocks
relevant for QFT. In the next chapter, we change topic and focus onto scattering theory, that we present



50 d Quantum mechanics, relativity and fields

with the goal of using quantum fields to practically calculate quantities useful for high-energy physics
phenomenology, which includes, in particular, cross sections and decay rates.
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