1 Symmetries of the Dirac Lagrangian

Consider the Dirac Lagrangian :

$$
\begin{equation*}
\mathcal{L}=\bar{\Psi}\left(i \gamma^{\mu} \partial_{\mu}-m\right) \Psi \tag{1}
\end{equation*}
$$

1.1 Vector Symmetry

Show that \mathcal{L} is invariant under the internal, rigid $U(1)_{V}$ transformation :

$$
\begin{equation*}
\Psi^{\prime}(x)=e^{i \theta} \Psi(x) \tag{2}
\end{equation*}
$$

and give the expression of the associated Noether current J_{V}^{μ}.

1.2 Axial Transformation

Consider now the transformation $U(1)_{A}$:

$$
\begin{equation*}
\Psi^{\prime}(x)=e^{i \xi \gamma_{5}} \Psi(x), \quad \xi \in \mathbf{R} \tag{3}
\end{equation*}
$$

1. Show that this transformation is a symmetry of the Lagrangian if and only if $m=0$, and construct the associated Noether current J_{A}^{μ}.
2. Go back to the demonstration of Noether's theorem for a transformation which does not leave the Lagrangian invariant, and show that in this case we have :

$$
\partial_{\mu} J^{\mu}=\frac{\delta \mathcal{L}}{\delta \xi}
$$

where $\delta \xi$ is the infinitesimal parameter of the transformation and J^{μ} is the usual definition of the (would-be) Noether current (i.e. the same expression that one has in the case the transformation is a symmetry).
3. For $m \neq 0$, using the equation of motion find the non-conservation equation of the axial current $\partial_{\mu} J_{A}^{\mu}$ and show that, indeed, $\xi \partial_{\mu} J_{A}^{\mu}=\delta \mathcal{L}$,

1.3 Symmetries and L and R spinors

Recall the Weyl decomposition of a Dirac spinor Ψ. In the Weyl basis (in which γ_{5} is diagonal),

$$
\begin{equation*}
\Psi=\binom{\varphi_{l}}{\chi_{r}} \tag{4}
\end{equation*}
$$

We define the left and right components of Ψ by :

$$
\begin{equation*}
\Psi_{L}=\binom{\varphi_{l}}{0}, \quad \Psi_{R}=\binom{0}{\chi_{r}} \tag{5}
\end{equation*}
$$

This decomposition can be made basis-independent by introducing the left and right projectors :

$$
\begin{equation*}
P_{L}=\frac{1-\gamma_{5}}{2}, \quad P_{R}=\frac{1+\gamma_{5}}{2} \tag{6}
\end{equation*}
$$

and writing :

$$
\begin{equation*}
\Psi_{L} \equiv P_{L} \Psi, \quad \Psi_{R} \equiv P_{R} \Psi \tag{7}
\end{equation*}
$$

1. Write the bilinears $\bar{\Psi} \Psi, \bar{\Psi} \gamma^{\mu} \Psi$ and $\bar{\Psi} \gamma^{\mu} \gamma^{5} \Psi$, then the Dirac Lagrangian, in terms of Ψ_{L} and Ψ_{R}. Show (again) that, if $m=0$, the left and right spinors are decoupled.
2. Write the action of the transformations $U(1)_{V}$ et $U(1)_{A}$ on the L and R spinors. Show that we can interpret these transformations as two independent $U(1)_{L}$ et $U(1)_{R}$, each acting on Ψ_{L} et Ψ_{R} respectively.
3. Using the $L-R$ decomposition of the Dirac Lagrangian, show (again) that for $m=0$ there is a full $U(1)_{L} \times U(1)_{R}$.

2 Spinor algebra

The Dirac matrices are defined in terms of the basic property :

$$
\begin{equation*}
\left\{\gamma^{\mu}, \gamma^{\nu}\right\}=2 g^{\mu \nu} \mathbf{1}_{4} \tag{8}
\end{equation*}
$$

where $g_{\mu \nu}$ is the Minkowski metric $\operatorname{diag}(1,-1-1-1)$ and $\mathbf{1}_{4}$ is the identity matrix.
A basis for positive and negative frequency solutions of the Dirac equation is given by :

$$
\begin{equation*}
u^{s}(p)=\binom{\sqrt{p_{\mu} \sigma^{\mu}} \xi^{s}}{\sqrt{p_{\mu} \bar{\sigma}^{\mu}} \xi^{s}}, \quad v^{s}(p)=\binom{\sqrt{p_{\mu} \sigma^{\mu}} \xi^{s}}{-\sqrt{p_{\mu} \bar{\sigma}^{\mu}} \xi^{s}}, \quad s=1,2 \tag{9}
\end{equation*}
$$

where ξ^{s} are the two-component spinors

$$
\xi^{1}=\binom{1}{0} \quad \xi^{2}=\binom{0}{1}
$$

In the expressions (9)

$$
\sigma^{\mu}=\left(\mathbf{1}_{2}, \sigma^{i}\right), \quad \bar{\sigma}^{\mu}=\left(\mathbf{1}_{2},-\sigma^{i}\right)
$$

where σ^{i} are the Pauli matrices.

2.1 Traces of γ matrices

1. Without using the explicit representation of the γ-matrices, but only equation (8), show that

$$
\begin{aligned}
& \operatorname{Tr}\left(\gamma^{\mu} \gamma^{\nu}\right)=4 g^{\mu \nu} \\
& \operatorname{Tr}\left(\gamma^{\mu} \gamma^{\nu} \gamma^{\rho} \gamma^{\sigma}\right)=4\left(g^{\mu \nu} g^{\rho \sigma}-g^{\mu \rho} g^{\nu \sigma}+g^{\mu \sigma} g^{\nu \rho}\right)
\end{aligned}
$$

where the trace is over the spinor indices.
2. Deduce expressions for $\operatorname{Tr}(\not \phi \phi)$ and $\operatorname{Tr}(\phi \phi \phi \not \phi)$, where a_{μ}, b_{μ} etc. are 4-vectors.
3. Show that $\operatorname{Tr}\left(\gamma^{\mu}\right)=0$

2.2 Spin sums

In what follows, $\alpha, \beta \ldots$ are spinor indices, and run from 1 to $4, s, s^{\prime} \ldots$ run over the polarisation $(1,2)$.

1. Show that

$$
\bar{u}^{s}(p) u^{s^{\prime}}(p)=2 m \delta^{s s^{\prime}}, \quad \bar{v}^{s}(p) v^{s^{\prime}}(p)=-2 m \delta^{s s^{\prime}}, \quad \bar{v}^{s}(p) u^{s^{\prime}}(p)=\bar{u}^{s}(p) v^{s^{\prime}}(p)=0
$$

2. Show that

$$
\bar{u}^{s}(p) \gamma^{\mu} u^{s^{\prime}}(p)=2 \delta^{s s^{\prime}} p^{\mu}
$$

3. Show that

$$
\sum_{s=1}^{2} u_{\alpha}^{s}(p) \bar{u}_{\beta}^{s}(p)=\not p_{\alpha \beta}+m \delta_{\alpha \beta}, \quad \sum_{s=1}^{2} v_{\alpha}^{s}(p) \bar{v}_{\beta}^{s}(p)=\not p_{\alpha \beta}-m \delta_{\alpha \beta}
$$

Notice that in excerices 1 and 2 spinor indices are contracted, while in excercise 3 they are not.

