M2 NPAC 2023,/2024
QFT problem set n°2

QED
1 Dirac propagator

We define Dirac’s propagator as :
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where the time-ordered product of two fermionic operators A(z) and B(y) is defined as
follows : A)B() o o
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Recall the plane wave expansions for free Dirac fields :
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where wy = 1/[p]2 + m?2, s runs over two polarizations, and u(p) and v(p) are positive and
negative frequency spinors satisfying
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The anti-commutation relations are :
(b5, b3} = 2m)*676@ (5= @), {c e} = 2m)°67° 6@ (5 - @) (3)
and all other anti-commutators vanishing.
1. Show that the (unordered) fermion two-point functions can be written as
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2. Using Cauchy’s theorem, rewrite D(z—y) as a four-dimensional integral over momentum-

space,
) = —ipu(a—y)* 4
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where p* = (w,p) (with w independent of ]5’), p? = ptp,, and the integration over
frequency is performed around an appropriate contour in the complex plane encircling
the positive frequency pole on the real axis, wy = ++/[p]? + m?2.
What is the function one obtains by integrating instead around the contour C_
encircling the negative frequency pole, wy = —+/|p]? + m??

3. Use the results of the previous two points to show that the fermion time-ordered
two-point correlator Saﬁ (z,y), defined in equation (1), is given by the expression
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the integral over frequency running along Feynman s contour Cr.



2 QED Cross Sections

The goal of this exercise is to calculate the unpolarized differential cross section for two
simple QED processes, at tree level, in the center of mass frame. The result will be expressed
as a function of the center of mass energy Ecps and the scattering angle 6 (i.e. the angle
between the outgoing particles and the incoming direction. The latter may be taken to be
the z direction).

Recall that, for 2 — 2 scattering, the differential cross section in the center of mass is
related to the amplitude by (cfr. TD3)
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where A is the scattering amplitude and p; ; are the initial and final momenta of one of the
particles.
Recall that :

Tr (v#9") = 4",
Tr (Y47 7P~7) = 4 (g"" 9" — 9" 9" + 9" g"")

where the trace is over the spinor indices.
Recall also the spin sum rules :
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The Feynman rules for QED S-matrix elements can be found at the end of this sheet.

2.1 ete” (Bhabha) Scattering

Consider the process

ete” — eTe™

We want to compute the unpolarized cross section (i.e. averaged over initial spins and sum-
med over final spins).

1. Draw the tree-level Feynman diagrams which contribute to this process ( Hint : there
are two of them : one in the s-channel, one in the t-channel).

2. Find scattering amplitude associated to each of diagram. What is their relative sign ?

3. Compute the square of the amplitude using the spin sum rules, and the correspon-
ding differential cross section using equation (5). Show that, in the high-energy limit
E.,, > m,, one finds :
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where s, t, u are the Mandelstam variables (Notice that, if we ignore the electron mass,
then s+t+u=0).

4. Rewrite equation (6) in terms of cosf and the center-of-mass energy.



2.2

Pair annihilation into photons

Consider the process

ete” — Yy

in the center-of-mass frame. We want to compute the unpolarized cross section.

1.

Draw the tree-level Feynman diagrams which contribute to this process ( Hint : there
are two of them : one in the s-channel, one in the t-channel).

2. Find scattering amplitude associated to each of diagram. What is their relative sign ?

3. Prove the photon polarisation sum rules :

2
T \* 1 1 — —
Z(eu) €& = —Guv + @(pp,py + pupU) (7)

i=1

where p, = (E,p), p, = (E,—D), € with ¢ = 1,2 are two transverse polarizations
(i.e. orthogonal to both p, and p, (Notice that if p, is a null vector, so is p,. For
example, pu = (E707 Oa E)7 pu = (E707 Oa _E)? 6/5 = (07 1a 07 0)7 Ei = (Oa 07 170) )

Show that the amplitude vanishes whenever the polarisation is along p,, or p,,. Deduce

that we can substitute )
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when squaring the amplitude.

Compute the square of the amplitude using the result above (make sure you first add
the contribution from the two diagrams, then square) and show that the corresponding
differential cross section is :
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Show that, in the high-energy limit E > m, and for finite 6 (i.e. for 8 = m/p)
equation (8) becomes

do 2ra? (14 cos?d 2
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13.1- QED Feynman rules

13.‘§ - Q’ED Feynman‘ rules

~ The Feynman ruIes for QED canbe read dn'egtly from the Lagranglan Just asin scalar QED

‘The only subtlety is possible extra minus signs. commg from anticommuting spinors within -

' the: time otdering. First, we write down the Feynman rules, then denve the supplementary
* minus sign rules. ’ ;

A photon propagator is; .represented with a squlggly line:
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4 3D Unless we are exphc1tly checking gauge mvanance, we will usually work n- Feynman
- gauge, E= 1 where the propagator is -
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o A spmor propagator isa sohd line with:an arrow:,
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>'_1,Cs ‘The arrow points to the nght for particles and to the left for antlpartlcles For mternal lmes,
o {the arrow points with momentum flow. '
. 3;4) » External photon lives get polanzatlon vectors: S h .
‘ ' 4 - WWW\O =¢,(p) (incoming), B .;(13.1?;)
3.5). < OVWWW =¢}(p) (outgoing). . R (13._1‘4)
Here the blob means the rest of the dlagram . o » '
External fermion hnes get sp1nors w1th u -spinors for electrons and v spmors for
3.6) positrons, _ 3 ‘ S i ,
| L e O=ee, @
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3.7) _ O.—w—' =v'(p)- o - (13.18)
o Extema] spmors are on-shell (they are forced to be on-shell by LSZ). So, for external '
3.8) .. spinors we can use the equations of motion: . .
| (p—m)ir (@) = W)~ m) = 0, . By
R (p -+ 1) (9) = 9°(p)(p -+ m) = 0, 3 (13.20)
‘tant ; : - -
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