

## Practical work

M2 - NPAC - 2023/2024
$\underbrace{\text { sorbonne }}_{\substack{\text { UNIVRSITE }}}$ Université Universite

## List of proposed Practical Works*

CEA-Saclay (max. 6 teams**)

- Neutron - Gamma Discrimination (2 teams)
- Measuring the shape of the nucleus (1 team)
- Muon lifetime measurement (2 teams)
- Muon tomography using Micromegas Detector (1 team) (presented by M. Vandebrouck)

IJCLab-Orsay (max. 9 teams)

- Study of the Compton Effect (2 teams)
- Gamma-ray Spectroscopy (1 team)
- Muon lifetime measurement (3 teams)
- Cosmic-rays Study (1 team)
- Study of the decay of Positronium (2 teams)
(presented by I. Matea)

[^0]Spontaneous fission source:
Emission of fission fragments, gammas and neutrons


Aim: discriminate neutrons from gammas

Two complementary techniques:

- Time Of Flight (TOF)
- Pulse Shape Discrimination (PSD)

Tools: scintillators + PMT

- Inorganic: $\mathrm{NaI}(\mathrm{Tl}) ; \mathrm{BaF}_{2}$
- Plastics: NE213
- Organic liquid doped with $\mathrm{Gd} / \mathrm{Hf}$

Data acquisition and analysis

- DAQ card: MATACQ (signal sampling)
- Analysis: Python or ROOT tools

By measuring the rotational band properties of ${ }^{152} \mathrm{Sm}$, one can characterize the shape of the nucleus and deduce its axial deformation parameter


Aim: determine the shape of a nucleus
Technique:
Gamma and electron spectroscopy

Tools: LaBr (fast timing detector) $+\mathrm{Ge}+\mathrm{Si}$

Data acquisition and analysis

- DAQ card: FASTER
- Analysis: Python or ROOT tools



# Muon lifetime measurement (1 team) 

 1. Using STEREO demonstratorAim: measure muon lifetime

Technique:
Using Cherenkov effect in a water tank


Tools: 2 (recent!) PMT from STEREO demonstrator

Supervisor: Boris Tuchming

# Muon lifetime measurement (1 team) 

 2. Using Organic scintillators
## Tools: plastics scintillators + PMT

Aim: measure muon lifetime $\square$ - Data acquisition and analysis:

Technique:
Isolate muon and electron signals using coincidences and anti-coincidences

- DAQ card: MATACQ (signal sampling)
- Analysis: Python or ROOT tools


Supervisor: Boris Tuchming

## Muon Tomography using Micromegas (1 team)



Aim: perform tomography
Technique:
Assembly and characterization of a tomographic bench
Tools: Micromegas gaseous detectors
Data acquisition and analysis

- DAQ card: digital electronics
- Analysis: ROOT tools



Supervisor: Maxence Vandenbroucke

Remarks:

- ID
- Cash for the canteen if possible



## Study of the Compton effect (2 teams)

## Goal:

study the Compton effect, by measuring the energy of the scattered photon, its angular dependency, and its differential cross section.

Method: coincidence measurements between incident and scattered gamma and scattered electron.

Material: $\mathrm{NaI}(\mathrm{Tl})$ scintilators - NIM electronics FASTER daq.

Data analysis: Python or ROOT tools.


Location:
Supervisor:

IJCLab Orsay
M. Charles

## Gamma-ray Spectroscopy (1 team)

Goal:
Start Lab Work in Nuclear Physics
Study of gamma decay of different standard sources. Angular correlation measurements for ${ }^{60} \mathrm{Co}$.

Method: gamma-gamma measurements.

Material: $\mathrm{NaI}(\mathrm{Tl})$ scintilators and Silicon
Semiconductor detectors - NIM electronics -
 FASTER daq.

Data analysis: Python or ROOT tools.

Location:
Supervisor:

IJCLab Orsay
I. Matea

## Muon lifetime measurement (3 teams)

## Goal:

Muon lifetime measurement.

Method: muon and electron detection.

Material: liquid scintilators - NIM electronics - FASTER daq.

Data analysis: Python or ROOT tools.


| Location: | IJCLab Orsay |
| :--- | :--- |
| Supervisors: | E. Capocasa/M. Bomben |

## Cosmic Rays Study (1 team)

## Goal:

Measure the angular distribution of muons at the surface of the Earth.

Method: muon detection.

Material: plastic scintilators - NIM electronics - FASTER daq.

Data analysis: Python or ROOT tools and Monte Carlo simulations and programming.


Better to have previous knowledge about MC simulation tools !

Location: Supervisor:

IJCLab Orsay
E. Capocasa

## Positronium decay (2 teams)

## Goal:

Study the decay of different states of positronium: ortho and para positronium.

## Method:

coincidence measurements.

## Material:

$\mathrm{NaI}(\mathrm{Tl})$ detectors - NIM electronics FASTER daq.

Data analysis: Python or ROOT tools.


## On the examination rules and more ...

The aim of the laboratory work is to build one or more experiments using the available equipments to carry out a pre-defined physics measurement.

Five criteria are used in the final evaluation of the student laboratory work:

- autonomy and dynamism during the practical work (4 points)
- scientific interest for the subject (4 points)
- practical work logbook (2 points)
- the report (6 points)
- oral examination (10 minutes/team) (4 points)

You can find the template for the article on the NPAC web page
The template SHOULD NOT be modified. Limited to 4 pages.

## Important dates:

- Week of $11^{\text {th }}$ Sep. - free presentation of the subject by the students
$-13^{\text {th }}$ Oct. $\quad-$ send the report to the supervisor(s) + I. Matea and M. Vandebrouck
$-8^{\text {th }}$ November - oral examination


## Organisation informations

## The lecture on Security and Radioprotection is mandatory ( $\sim 1 \mathrm{~h}$ following this presentation)

## TL choice - Tomorrow morning (please read the TL booklet on the web) Start at 10h00

Also tomorrow morning:

- logbook presentation/distribution
- discussion about writing the report (more details last week of the TL)

Miscellaneous:

- TL : french or english for interaction with supervisors, for article (abstract in english)
- in case of absence : inform your direct supervisor
- library NPAC : code A5991
- if needed : IJCLab Library also

Schedule CEA : 9h-12h, 13h-17h // IJCLab : 9h-12h, 13h30-17h30


[^0]:    * the Practical Work description can be found on the NPAC web page
    ** 1 team is composed by 2 or 3 students

