Lectures outline

- 1- remind of gaseous detectors part
- 2- trigger example with gaseous detector
- 3- Calorimeter detectors (one word about neutron interaction)
- 4- trigger with calorimeter det. (and MM gaseous detector)
- 5- magnets (briefly)

Thanks to Laurent Serin (LAL) for the calorimetry part.

Calorimeter detectors Energy measurements

1- Calorimeter definition & history, illustration with some major physics results

- 2- Electromagnetic interaction and shower development
- **3- Electromagnetic calorimeters technologies**
- **4- e**/γ reconstruction, calibration and performance
- 4- Hadronic shower development
- 5- Hadronic calorimeters technologies
- 6- Jets reconstruction calibration and performance
- 7- Missing transverse energy measurement
- **8- Conclusion**

Slides categories

For information
Useful to know
Needs to know

Calorimetry definition

History of calorimeters

Illustration with some major physics results

Calorimetry definition

- Experimental technique used in Nuclear Physics, Particle Physics and Astroparticle to detect a particle and measure some of its properties based on total or partial absorption of the particle in a fiducial volume
- Destructive process : Particle is absorbed in the medium or exit it quite modified
- Particle energy is converted in a detectable signal.
- Key element of any High Energy Physics (HEP) experiment

Calorimeters needed for HEP

Sensitive to all charged and neutrals particles in final state Good resolution at high energy, and "sizeable" detectors

Calorimeter shower depth ~ In E/E_c almost energy independent

→ Calorimeter can be compact detector

Magnetic spectrometer :

 $\sigma(p) \, / \, p \sim \, p / (BL^2)$

→ Detector size has to grow quadratically to maintain resolution

Calorimeter can also provide:

- Position/angular measurement
- Time measurement
- Trigger
- Particle identification (e, γ , π , μ , h...)

Interlude : cryogenic µcalorimeter

Definitely best energy resolution for very low energy but not the subject of this lesson 10 600 TiN FWHM 117 MeV NKὰ µcal EDS 133 MeV Na I(TI) μcal EDS Counts (0.16 eV bins) 10 Si(Li) EDS 400 FWHM Kanal 10 pro 200 Ereignisse (Ti Ll THE SUB-USING $Ti L\alpha_{12}$ Ge (Li) TiLn) Ti Lß₃₄ 360 400 440 480 520 10 2000 3000 3500 4000 1500 2500 Energy [eV] Kanal Nr.

At **100 MeV**, solid state (Si, Ge) detectors have ~25/30 better resolution than scintillators At few **hundred eV**, cryogenic bolometer can have 50 better resolution Ok for event energy measurement but not individual particle energy measurement

Classification of calorimeters

Classification of calorimeters

By signal dete	Existing Electromagnetic Calorimeters				
Homogeneous Calorimeters	Scintillation/ Crystal	Technology/Experiment Depth Resolution Year			
	Semiconductor	$ \begin{array}{l} NaI(Tl) \; (Crystal \; Ball) \\ Bi_4 Ge_3 O_{12} \; (BGO) \; (L3) \end{array} $	$20X_0$ $22X_0$	$2.7\%/\mathrm{E}^{1/4}$ $2\%/\sqrt{E} \oplus 0.7\%$	1983 1993
	Cherenkov	CsI (KTeV) CsI(Tl) (BaBar)	$27X_0$ 16–18 X_0	$2\%/\sqrt{E} \oplus 0.45\%$ $2.3\%/E^{1/4} \oplus 1.4\%$	1996 1999
	Ionization (Noble Liquids)	CsI(TI) (BELLE) PbWO ₄ (PWO) (CMS) Lead glass (OPAL)	$16X_0$ $25X_0$ $20.5X_0$	1.7% for $E_{\gamma} > 3.5 \text{ GeV}$ $3\%/\sqrt{E} \oplus 0.5\% \oplus 0.2/E$ $5\%/\sqrt{E}$	1998 1997 1990
Sampling Calorimeters		Liquid Kr (NA48)	$27X_0$	$3.2\%/\sqrt{E} \oplus 0.42\% \oplus 0.09/R$	E 1998
	Scintillation	Scintillator/depleted U	$20-30X_0$	$18\%/\sqrt{E}$	1988
	Gas	Scintillator/Pb (CDF)	18X ₀	$13.5\%/\sqrt{E}$	1988
	Solid State	Scintillator fiber/Pb spaghetti (KLOE)	$15X_0$	$5.7\%/\sqrt{E} \oplus 0.6\%$	1995
		Liquid Ar/Pb (NA31)	$27X_0$	$7.5\%/\sqrt{E} \oplus 0.5\% \oplus 0.1/E$	1988
	Liquids	Liquid Ar/Pb (SLD)	$21X_0$	$8\%/\sqrt{E}$	1993
	Common Absorbers:	Liquid Ar/Pb (H1)	$20-30X_0$	$\frac{12\%}{\sqrt{E}} \oplus 1\%$	1998
	Pb, Fe, Cu, U, W	Liquid Ar/Repl. 0 (DØ) Liquid Ar/Pb accordion (ATLAS)	$25X_0$	$10\%/\sqrt{E} \oplus 0.3\% \oplus 0.3/E$ $10\%/\sqrt{E} \oplus 0.4\% \oplus 0.3/E$	1995
	Liquids Common Absorbers: Pb, Fe, Cu, U , W	Liquid Ar/Pb (SLD) Liquid Ar/Pb (H1) Liquid Ar/depl. U (DØ) Liquid Ar/Pb accordion (ATLAS)	$21X_0$ $20-30X_0$ $20.5X_0$ $25X_0$	$\frac{1.5 \times \sqrt{\sqrt{E}}}{8\%/\sqrt{E}}$ $\frac{12\%}{\sqrt{E} \oplus 1.3\% \oplus 0.3/E}$ $\frac{16\%}{\sqrt{E} \oplus 0.3\% \oplus 0.3/E}$ $\frac{10\%}{\sqrt{E} \oplus 0.4\% \oplus 0.3/E}$	1 1 1

Example of calorimeters

Fixed target calorimeters : NA5 at CERN (1978) QCD measurements One of the first segmented calorimeter

24 (ϕ) x 10 (θ) cells EM section : Scintillator/Pb Had section :Scintillator/Fe using two different Wave Length Shifter (WLS)

Main idea : guide the light of both section in single rod read by two PM behind yellow (EM) and green (Had) filters

Example of calorimeters

Fixed target calorimeters : CP violation in K decays experiment : NA31 / NA48 / KTeV

- → Need to measure accurately $K_L \rightarrow \pi^0 \pi^0 \rightarrow 4\gamma$ (Br($K_L \rightarrow 3\pi^0$)/(Br($K_L \rightarrow 2\pi^0$) ~ 300
- \rightarrow Shower separation + invariant mass : fine granularity and energy resolution
- → Homogeneous calorimeters

KTeV 3100 pure CsI crystals

Liquid Krypton calorimeters, still in used in K experiments at CERN

LHC calorimeters

CMS : Homogeneous calorimeter

PbWO₄ crystals

LHC electromagnetic calorimeters, two different approaches

ATLAS : Liquid Argon / Lead sampling electromagnetic calorimeter

ATLAS calorimeter better than CMS or CMS better than ATLAS?

$H \rightarrow \gamma \gamma$ in ATLAS and CMS

**

Electromagnetic interaction and shower development

e+/e- interaction in matter

Critical energy E_c : defined by $(dE/dX)_{ion} = (dE/dx)_{brem}$ **Radiation length**: mean distance after which an electron has lost by radiation all but a fraction 1/e of its initial energy X_0 (E(after 1 X_0) =E(initial)/e)

Summary for e+/e-

1) Above critical energy Ec (~a few MeV) fractional energy loss dominated by bremsstrahlung, below dominated by ionization/excitation

2) Energy loss by ionisation almost independent of incident energy, by radiation linear with energy

3)
$$\varepsilon_0 = 610 \text{ MeV}(Z \neq 1.24).$$

$$X_{0} = \frac{716.4 \text{g.cm}^{-2} \text{A}}{\text{Z(Z)} + 1) \ln(187 / \sqrt{Z})}$$

High Z material provide low critical energy and small radiation length (compact detector)

(You should divide by the density ρ to have X_0 in cm)

Photon interaction in matter

Photon interaction in matter

Summary for γ

- 1) Above a few m_ec^2 , photon interaction is dominated by pair production. Cross section is constant with energy (similar fractional energy loss in brem) Probability that a high energy photon is not converted into e+e- pair after 9/7 X₀ is 1/e (37 %) $\sigma = 7/9 A/(X_0N_A)$.
- At intermediate energy (keV→GeV), Compton scattering contribution For high Z, max of cross section ~ pair creation cross-section For small Z, max of cross section > pair creation cross-section
- 3) Low energy photon (< MeV) is dominated by photo-electric effect
 Z⁵ dependence of cross-section.
 In low Z material, photon can show large mean free path length and escape detection.

A simplified EM shower model

- EM shower model : After 1 X₀, $e^{+/-} \rightarrow e^{+/-} \gamma$ and $\gamma \rightarrow e+e-$ with proba 100 % Equal energy split Cascade stops when electron/positron reaches ε (~critical energy) N(n) =1) What is the number of particles after n X_0 2) What is the charged particle energy after n X_0 E(n) =3) The cascade process stops when $E = \varepsilon (E_c)$ at $n_{max} =$ What is the total number of particles at n_{max} 4) By defining s_0 as the track length of electrons below the critical energy, compute the total track length T of all charged particles T =
 - (neglect 1 wrt 2**nmax)
- Conclude about the energy resolution if you measure T?

 $N_{max} =$

Simplified EM shower model

EM shower versus Had. shower in air

Total amount of air at sea level $\sim 23.X_0$

Implication : the hadronic showers

In an hadronic shower, there will be production of many π , K and neutrons. $\pi 0$ will give an EM component (from 15 to 20% of initial E), some of the π et K at low energies will give – by decay - μ , v. Neutrons are difficult to detect (neutral, heavy part.) and will escape. This gives with neutrino the invisible energy of the shower.

showers : higher multiplicity for hadronic interaction at the begining of the shower development. $p_t \approx 0.35 \text{ GeV/c}$

How the hadronic shower is produced?

Secondary particules production in hadronic showers are coming from "spallation" :

Fig. 6. Step I: Development of an "internuclear cascade". From one nucleus an intranuclear cascade releases a few high energetic spallation products, which are able to iniciate further intranuclear cascade processes. Step II: The highly excited nuclei remaining from each intranuclear cascade deexcite.

Longitudinal shower development (1)

Longitudinal shower development (2)

Shower containment

100 GeV electron contained in **15** X_0 of AI and **20** X_0 of U but remind that $X_0(AI) = 89$ mm and $X_0(U) = 3.2$ mm, i.e. **130** vs 6 cm !

Useful parameterisation of containment $L(95\%) = t_{max} + 0.08Z + 9.6 [X_0]$

Multiple scattering

θ₀ -smaller for high energy (p) -smaller if small material thickness (L)

- smaller if large radiation length

Lateral shower development (1)

Pair creation and multiple scattering : At shower start, dominated by electron/positron scattering along shower axis. Mostly Gaussian

Compton and photo-electric effect at small energy Process are isotropic. Large penetration length of low energy photon Compton and by photo-electrons

$$\langle \theta \rangle = \frac{21.2 \text{ MeV}}{E_e} \sqrt{\frac{x}{X_0}}$$

Lateral extension: $R = x \cdot tan \theta \approx x \cdot \theta$, if θ small ...

Main contribution comes from low energy electron, E_c If one assume that the approximate range of electrons is about 1 $X_{0,}$ $\rightarrow < \theta > = 21$ MeV/ E_c and lateral extension R = $X_0 < \theta >$

Molière Radius is defined as $R_m = 21 \text{ MeV} / E_c \cdot X_0$ Convenient parameter to estimate lateral shower containment 87 % (96%) of the energy of a electron shower are contained in 1 (2) R_m

Molière Radius governed by material density

R

Lateral shower development (2)

Material properties

Material	Z	Density	Е _с	X ₀	ρ _M	dE/dx mip	λ _{int}
			[Hev]	[]	[]	IMev cm 1	[1111]
С	6	2.27	8.3	188	48	3.95	381
Al	13	2.70	43	89	44	4.36	390
Fe	26	7.87	22	17.6	16.9	11.4	168
Cu	29	8.96	20	14.3	15.2	12.6	151
Sn	50	7.31	12	12.1	21.6	9.24	223
W	74	19.30	8.0	3.5	9.3	22.1	96
Pb	82	11.30	7.4	5.6	16	12.7	170
U 238	92	18.95	6.8	3.2	10	20.5	105
Concrete		2.50	55	107	41	4.28	400
Glass		2.23	51	127	53	3.78	438
Marble		2.93	56	96	36	4.77	362
Si	14	2.33	41	93.6	48	3.88	455
Ar (liquid)	18	1.40	37	140	80	2.13	837
Kr (liquid)	36	2.41	18	47	55	3.23	607
Xe (liquid)	54	2.95	12	24	42	3.71	572
Polystyrene		1.032	94	424	96	2.00	795
Plexiglas		1.18	86	344	85	2.28	708
Quarz		2.32	51	117	49	3.94	428
Pb glass		4.06	15	25.1	35	5.45	330
Air (2C,1atm)		0.0012	87	304m	74m	0.0022	747m
H ₂ O		1.00	83	361	92	1.99	849
PbWO ₄		8.3		8.9	20	10.2	207
CeF ₃		6.16		16.8	26	7.9	259
LYSO		740		11.4	20.7	9.6	209

Formulae for compound material : $1/X_0 = \Sigma w_j / X_j$

Summary of useful definition

Energy loss by radiation :

Critical energy:

 $-\frac{7}{9}\frac{x}{X_0}$ $\langle E(x) \rangle = E_0 e^{-\frac{x}{X_0}}$ vabsorption (e+e-) $\langle I(x) \rangle = I_0 e$

 $X_0 = \frac{180A}{Z^2} \frac{\text{g}}{\text{cm}^2}$ Radiation length: $E_c = \frac{550 \text{ MeV}}{7}$ [Attention: Definition of Rossi used] $t_{\rm max} = \ln \frac{E}{E_c} - \begin{cases} 1.0 & \text{e}^- \text{ induced shower} \\ 0.5 & \text{y induced shower} \end{cases}$ Shower maximum:

Longitudinal energy containment:

Transverse Energy containment: $L(95\%) = t_{\rm max} + 0.08Z + 9.6 [X_0]$

 $R(90\%) = R_M$ $R(95\%) = 2R_M$

 $R_m = (21 \text{ MeV}/E_c) \cdot X_0$ 1/Z * Z (Z/A) Small dependence with Z

Energy resolution

Detectable visible energy subject to fluctuation → Finite energy resolution

$$\sigma(E) = \sqrt{\sigma_1^2 + \sigma_2^2 + \sigma_3^2} = \sigma_1 \oplus \sigma_2 \oplus \sigma_3$$

Most of the sources of fluctuation can be considered uncorrelated :

- Shower fluctuations
- Sampling fluctuations in sampling calorimeter
- Signal quantum fluctuations (photo detectors..)
- Leakage
- Noise in the readout
- Specific technology effects (recombination, light attenuation, gas saturation....)
- Specific to detector construction (mechanics tolerance, electronics response...)

Energy resolution

Usually parameterized as

$$\frac{\sigma}{E} = \frac{a}{\sqrt{E}} \oplus \frac{b}{E} \oplus c$$

- ▶ a stochastic term:
 - intrinsic statistical shower fluctuations
 - ♦ sampling fluctuations
 - ♦ signal quantum fluctuations (e.g. photo-electron statistics)
- **b** is the noise term:
 - electronic readout noise
 - pileup noise in high luminosity environment: fluctuations of energy from sources other than the primary particle (e.g. particles from other collisions in the same or in previous bunch crossings)

c is the constant term that incorporates all other systematics:

- ✦ detector response non-uniformity (hardware or calibration)
- ✦ imperfections in calorimeter construction and geometry (e.g. not fully hermetic, cracks...)
- ♦ longitudianl leakage
- energy lost in dead material upfront...
- dominant contribution at high energies

Questions: which term is affected by:

- fluctuations in the # of particles in the shower?
- global scale (gain) shift?
- electronics noise?
- global offset (pedestal) shift?
- shower particles escaping the calorimeter?
- fluctuations in the # of photo-electrons detected ?
- pile-up (remnants of earlier events)?
- radioactivity ?
- presence of dead material?
- statistical uncertainty of scale (gain) constants?
- statistical uncertainty on offset (pedestal) constants? 1/E (b)

1/√E (a) 1 (c) 1/E (b) 1/E (b) 1* also 1/√E if upstream 1/√E (a) 1/E (b) 1/E (b) 1 (c) 1 (c) 1/E (b) ***

Electromagnetic calorimeter technologies :

Homogeneous calorimeters

Sampling calorimeters
Homogeneous calorimeters

- Combine both the role of absorber and signal generation.
- Total volume sensitive to the deposited energy. (Large fraction of visible energy)

Advantage

- Best energy resolution ($1/\sqrt{E}$ term) limited by physical factors as number of photo-electrons if ideal calo (no leakage)
- Intrinsically linear in principle
- Well suited for low energy application (nuclear spectroscopy, medical application...)

Disadvantage

- Limited segmentation (especially in depth)
- Can not be used for hadronic shower to keep "reasonable" detector size.
- Cost (Pb or Cu less expensive than crystals, Silicon or noble liquid)

Sampling calorimeters

- Shower is sampled in active layers interleaved with absorbers

passive material

Advantage

- Can achieve easily lateral and longitudinal segmentation
- → Angular measurement and particle Identification
- cheaper calorimeter (in principle !) as absorber not too expensive
- Only possibility for Hadron calorimeters

Disadvantage

- Small fraction of energy seen
- → Stochastic term degraded

Homogeneous calorimeter technology

Should be dense enough to contain EM shower, give enough signal

Semiconductor Si, Ge : very low threshold to create electron-hole pair (2.9 eV in Ge)

 \rightarrow Use in nuclear spectroscopy, medical application

- Cerenkov : high refractive index induces cerenkov light with relativistic charged particle
 → Lead glass, OPAL@LEP
- Scintillators : ionisation tracks converted in light in crystals (fluorescence)
 → NaI(TI) (Crystal Ball), L3 (BGO), Babar, Belle, KTeV (CsI), PbWO₄ (CMS)
- Noble Liquids : cryogenics detectors. Ionisation produces charge and light (scintillation)

→ Kr (NA48, KEDR)

Si/Ge low energy homogeneous calorimeters

Ge : energy to create an electron-hole pair at 77 K : 2.9 eV

 $1 \text{ MeV} \rightarrow \text{N}= 3.4 \ 10^5 \text{ pairs}$

 $\sigma_{E}/E \sim 1/\sqrt{N} = 0.17\%$

Even better due to Fano factor (pairs created not statistically independent, constrained by total energy of incident particle, similar to binomial variance) F = 0.13 in Ge

 $\sigma_{\rm E}/{\rm E} \sim \sqrt{({\rm F}/{\rm N})} = 0.06$ %

Popular detectors in Nuclear physics (AGATA for instance)

Noble liquid homogeneous calorimeters

Homogeneous crystals calorimeters

Crystal	light	ρ [g/cm³]	X ₀ [cm]	τ [ns]	λ [nm]	Output	Damage (Gy)
Nal	Scint	3.67	2.59	250	410	1 (40000 ph/MeV)	10
BGO	Scint	7.13	1.12	300	410	0.15	10 *
BaF ₂	Scint	4.89	2.05	600	310	0.20	10 ⁵ *
Csl (TI)	Scint	4.53	1.85	35 (1000)	420	0.05 (0.45)	10 ³
PbWO ₄	Scint	8.28	0.89	5-15	430	0.01	10 ⁴ *
CeF ₃	Scint	6.16	1.68	10-30	325	0.10	
Pbglas5	Cer	4.08	2.54	fast	< 350	0.00015	
Pbglas6	Cer	5.20	1.69	fast	< 350	0.00023	

Homogeneous crystals calorimeters

Growing crystals not always easy task By construction non uniform response from one crystal to another (up to 10-20%), different transparency

25 cm

Homogeneous crystals calorimeters

CMS calorimeter

Scintillator : PBW04 [Lead Tungsten] Photosensor : APDs [Avalanche Photodiodes]

> Number of crystals: ~ 70000 Light output: 4.5 photons/MeV

Impact of radiation on CMS calo

Performance of homogeneous calorimeters

Technology (Experiment)	Depth	Energy resolution	Date	
NaI(Tl) (Crystal Ball)	$20X_0$	$2.7\%/E^{1/4}$	1983	
$Bi_4Ge_3O_{12}$ (BGO) (L3)	$22X_0$	$2\%/\sqrt{E}\oplus 0.7\%$	1993	T
CsI (KTeV)	$27X_0$	$2\%/\sqrt{E} \oplus 0.45\%$	1996	On
CsI(Tl) (BaBar)	$16 - 18X_0$	$2.3\%/E^{1/4} \oplus 1.4\%$	1999	<u> </u> <u></u>
CsI(Tl) (BELLE)	$16X_0$	1.7% for $E_{\gamma} > 3.5 \text{ GeV}$	1998	Ien
PbWO ₄ (PWO) (CMS)	$25X_0$	$3\%/\sqrt{E} \oplus 0.5\% \oplus 0.2/E$	1997	e
Lead glass (OPAL)	$20.5X_0$	$5\%/\sqrt{E}$	1990	S S
Liquid Kr (NA48)	$27X_0$	$3.2\%/\sqrt{E} \oplus 0.42\% \oplus 0.09/E$	1998	

For crystals/Cerenkov stochastic term contains both shower fluctuation and photo-electron statistics (converting photons in electrical signal). Example : Lead Glass : Cerenkov only if e+/- with E > 0.7 MeV and photon-detector provides 1000 photo-electrons/GeV Expected resolution for 1 GeV ? → stochastic term ?

Sampling calorimeters

- Shower is sampled in active layers interleaved with absorbers

passive material

Advantage

- Can achieve easily lateral and longitudinal segmentation
- → Angular measurement and particle Identification
- cheaper calorimeter (in principle !) as absorber not too expensive
- Only possibility for Hadron calorimeters

Disadvantage

- Small fraction of energy seen
- → Stochastic term degraded

EM sampling calorimeter technology

Absorber with dense material with low critical energy (high Z) for shower development (U, Pb, W...). All technologies possible for active layers :

- Scintillators
 →U + scint (Zeus @Hera), Pb + scint (CDF @Tevatron)
- Gazeous detectors

 → Pb + wire chambers (ALEPH@LEP)
- Liquid Argon :

→ LAr + Pb (Cello , NA31, SLD, H1@Hera, ATLAS@LHC)
→ LAr + U (D0@Tevatron)
Kr considered as option at SSC & LHC

Semiconductors

 → Si+W (Pamela, Calice@ILC, CMS HGCAL@HL-LHC)

Sampling calorimeter

Simplified model of previous : Active medium : counts only charged particle produced in absorber shower development. Nmax = E/E_c , 2/3 are charged particles

Key parameters :

Sampling frequency : Number of times a high energy electron/ γ is sampled. Linked to absorber thickness (t).

Thinner is t, higher is the sampling frequency, better is the resolution, but if too small correlated signals in two active layers

 $Pb : E_{c} = 7.4 \text{ MeV}$

For 1 GeV shower, Nch~90

 σ (Nch)/Nch = 1/ \sqrt{Nch} = 10%

Typical best stochastic term

of sampling EM calorimeter

Sampling fraction : Fraction of energy deposited by a mip in active layer

$$f_{samp} = \frac{E_{mip}(actif)}{E_{mip}(actif) + E_{mip}(absorbeur)}$$

 $E_{mip} = (dE/dx)^*$ distance t for passive material, s for active

Fractional energy response $f_R = (E_{active}) / (E_{active} + E_{passive})$ (includes showering process)

Sampling Calorimeter

Blue absorber (t), red active medium (s)

Sampling Calorimeter

Blue absorber (t), red active medium (s)

Same sampling fraction but smaller sampling frequency $(4 / 8) \rightarrow$ worse stochastic term Angular effect : constant sampling fraction but smaller frequency

EM sampling calorimeter E resolution

EM sampling calorimeter examples

ATLAS Lar EM Calorimeter

Example: ATLAS Liquid Argon Calorimeter

Main optimisation : constant term and γ/π^0 separation

Trigger parenthesis

e/γ Reconstruction

Calibration

Performance

From signal cell to cell energy (1)

$E_{cell} = F(\mu A \rightarrow MeV) \times F(adc \rightarrow \mu A) \times (adc - ped)$

F(adc→μA) : take into account electronics chain gain. Calibration system can be laser signal in a crystal or inject charge at detector output as similar as possible to signal (but residual bias !) Measure or correction for linearity. To be done for all channels ! Stability measurement with time / temperature

From signal cell to cell energy (2)

$E_{cell} = F(\mu A \rightarrow MeV) \times F(adc \rightarrow \mu A) \times (adc - ped)$

F(µA→MeV) : Can be computed from first principles to 5-10% but not enough accurate (for sampling calorimeters includes sampling fraction) Usually extracted from beam test with prototype by shooting and reconstructing particles of well know energy Still not accurate ultimately.....

μ (mip) signal in calorimeter

- Muons will not produce showers in calorimeter but deposit Minimum Ionizing Particle energy (dE/dx at minimum)
- \rightarrow Can be used for rough calibration / Inter calibration / time dependence
- → Difficult to extract absolute EM energy scale as e/μ for mip $\neq 1$
- → Landau spectrum with high energy tail, characterized by Most Probable Value
- → Useful quantify is S/N =MPV/ σ to qualify electronics readout/noise

Shower energy reconstruction

Fixed cluster size :

- Large enough to contains >95 % of EM shower energy
- Small enough to minimize noise and shower separation

 $(\sigma_{\text{noise}} = N_{\text{cells}} \sigma_{\text{inco}} \oplus N^2_{\text{cells}} \sigma_{\text{coh}})$

Fast and easy algorithm

Topological algorithm :

- Consider all cells with $E > E_{cut}$ (3 σ noise)
- Start from a seed (max)
- Add neighbour cell if E> E_{cut}
 Iterative process. Can achieve same
 energy resolution but more difficult for
 linearity (calibration) and noise contribution
 (different from one shower to another)

Em shower + noise (or other particle)

From cluster to particle energy

In situ particle energy calibration

- Can use E(cal)/p(tracker) if material upstream uniform and not large

Example of KTeV CsI calorimeter :

use electrons from $K_L \rightarrow \pi e v$

Set absolute energy scale

Crystal to crystal calibration

Time dependence of signals

Quite difficult at LHC with material variation along $\eta \rightarrow E/p$ distribution with too many tails

In situ particle energy calibration (3)

- Use mass constraint on well known particle : $Z \rightarrow e+e-@$ LHC

$$m = \sqrt{2E_1E_2 \left(1 - \cos(\theta_{12})\right)}$$

$$E^{\rm corr} = E\left(1 + \alpha_i\right)$$

$$m_{ij}^{\rm corr} \simeq m_{ij} \left(1 + \frac{\alpha_i + \alpha_j}{2} \right)$$

With more stat :

- Reduce region for each α + along φ Can use J/psi \rightarrow e+e- for low energy (linearity) Needs to extrapolate γ from simulation or
 - Ζ→ееγ/μμγ

e+e- resonances

Photon pointing in ATLAS

Timing resolution

Shower (electron/photon) time measurement can also be achieved, can be useful to reject out of time events (accidentals) with respect to collision KLOE calorimeter

Time measurement in calorimeter, promising way to mitigate "in time" pile-up at LHC

neutrons

Table 12-1. Average number of collisions required to reduce a neutron's energy from 2 MeV to 0.025 eV by elastic scattering

Element	Atomic Weight	Number of Collisions	
Hydrogen	1	27	
Deuterium	2	31	
Helium	4	48	
Beryllium	9	92	
Carbon	12	119	
Uranium	238	2175	

Neutron Cross Sections

Capture may be increased at some energy due to resonnance effect in the total cross section...

T (K)	E _o (eV)	v _o (m s ⁻¹)	Ē _{th} (eV)
300	0,0253	2200	0,038
400	0,034	2600	0,051
600	0,052	3100	0,075
800	0,069	3600	0,103
1000	0,086	4000	0,129

Cross section on Th-232

Consequences on LHC experiment hall

Background in Atlas cavern

muon spectrometer (top curve: $2.3 < \eta < 2.7$, middle

curve: $1.4 < \eta < 2.3$ and bottom curve: $\eta < 1.4$).

(dernière simulation : facteur de sécurité ~ x2)

Figure 5-66 The expected photon flux as a function of photon energy in different rapidity regions of the muon spectrometer (top curve: $2.3 < \eta < 2.7$, middle curve: $1.4 < \eta < 2.3$ and bottom curve: $\eta < 1.4$).

Charge track momentum measurement in a magnetic field

- Size limited (cost)
- rel. high material budget
- Vertex non-usable

Superconducting devices in LHC

Magnets

- LHC ring magnets (Nb-Ti): Rutherford cables
 - 1232 main dipoles: 8.3 T x 15 m
 - 392 Main quadrupoles 223 T/m (7 T) x 4 m
 - 7600 other SC magnets (cable or wire)

• KF cavities (N_b coating)

Rutherford Nb-Ti cable: a key technology for LHC

Rutherford cables for accelerator magnets, Cryogenic Cluster Day, Rutherford Appleton Laboratory, 20/09/2016

0

	Tevatron	HERA	RHIC	LHC
Dipole field	4,4 T	5.3 T	3.5 T	8.3 T
Number of strands	23	24	30	28-36
Cable current	4 kA	5.5 kA	5 kA	11.8 kA

cables

ess)

Critical current limited by density of cable defects (grain boundery / joint de grain)

Magnetic fields : supraconducting magnets of ATLAS

Muon detectors

Example of calorimeters

Collider calorimeters : Geometry is usually more complex, need to cover almost 4π solid angle (Missing energy) but also to extract signals. Usually central part with cylindrical geometry (barrel) and small angle part at each end (endcap/forward)

SPS experiments UA1 and UA2

Calorimeter had a crucial role in W/Z discoveries :next slides

LEP experiments :

L3 had a EM calo with excellent energy resolution (γ) : 11 000 BGO crystals

But no real impact on main physics topics at LEP

Other experiments (ALEPH, DELPHI and OPALE) put more emphasis on TPC, and Calorimeter granularity

Electromagnetic shower

Impact of leakage

Leakage fluctuation usually not poissonian \rightarrow induces low energy tails Longitudinal leakage worsens more the resolution than lateral leakage at fixed value. Albedo (back scattering photon) usually dominated by dead material energy loss in front of calorimeter

Sampling calorimeter with gas

- Gas low density medium Usually poor energy resolution:
- Small sampling fraction (so need larger gap)
- + Track length fluctuation : low electron can travel much in gap Resolution increases with \sqrt{s}

+ Landau fluctuation Asymmetric energy deposit in thin active layer (non Gaussian energy measurement) Calorimeter with gas detector not optimal for good resolution

 δ proportional to density

From cluster to particle energy (2)

detector description/simulation not perfect

Time stability of ATLAS Calo

Calibration not easier in CMS !

Shower position reconstruction

Energy weighted barycentre

Bias due to finite cell size : S shape \rightarrow correction to apply If longitudinal segmentation can also estimate shower depth from X = $\Sigma X_i^o E_i / E_{rec}$

From barycentre per layer \rightarrow Shower direction