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Hello
• My name's Mat Charles. 

I work at the LPNHE lab at Sorbonne Université (at Jussieu) 

• I'm an experimental particle physicist. 

• I'm part of the LHCb collaboration, using the LHC at CERN. 
• We work on flavour physics (CP violation, rare decays, 

spectroscopy, etc), mostly of b and c hadrons. 

• In the past, I also worked on the BABAR experiment, and on 
calorimeter reconstruction algorithms for a future linear 
collider detector.
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Disclaimers & advice
• I'll probably make some mistakes during these lectures. 

• If you spot one, please let me know (in real time, or later). 
• If unsure, please ask! Or check a second source*. 

• Please ask questions. (In English or French or Franglais.) 

• Slides draw on work of previous lecturers (Jean-Paul Tavernet, 
Julien Bolmont, Sébastien Procureur), on textbook by Leo, on 
PDG review. 

• These lectures aren't meant to be exhaustive, but to help you 
understand the physics and concepts behind detectors, and to 
give you the tools to understand what follows. 
• Will try to include key formulae for reference... 
• ... but honestly, if you need to (e.g.) calculate dE/dx to 1%, 

you should look up a specialised reference.

* Motto of Royal Society: "Nullius in verba"
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Plan

• Second lecture (this one): 
• Some practicalities/admin 
• Interaction of charged particles in matter 

• Third lecture: interaction of photons in matter, scintillators 

• Fourth lecture: photodetectors, interactions of other neutral 
particles in matter



5

Practicalities: Mini-stages
Will be based on articles proposed by researchers (tutors) in 
Paris laboratories. 

• The three lecturers (Philippe, Thomas, myself) will build a list 
of topics and send it to you. 

• You will have to choose a topic by/on 24 October 
• 2 students per topic (en binôme), or 3 if too few topics. 

The mini-stage itself: 
• Bibliography/TD session on Tue 21 October (14h-17h) at 

Orsay building 100, for reading the article, initial 
bibliography, Q&A to lecturers, discussion in binôme 

• Then, two meetings with the tutors among these 3 slots: 
• Tue 28 November (14h-17h) 
• Wed 6 December (9h-12h) 
• Tue 12 December (14h-17h) 

• Presentations (one group at a time) on Tue 19 + Wed 20 
Dec [TBC]. Everybody must speak!
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Practicalities: Mini-stages

Instructions: 
• Preparation: read the article, discuss it with your tutor. 
• Prepare a presentation. Your talk will be 20 min long, 

followed by 15 minutes of questions/discussion with the 
jury. 

• Guidance for the presentation: 
• Place the article in context 
• Give the basic principles of the detector, how it works, 

advantages and drawbacks 
• Present in detail one of the results of the article, or all of 

the results (depending on the length of the article) 
• Discuss how the detector is used (or will be used) 

• NB Focus should be on detector physics.
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Practicalities: Exams
I can't speak for the other lecturers, but for these three lectures*: 

• I may set questions on the physics of anything we cover. 
• I may set questions on the operational principles of any of the 

detector types we discuss. 
• I won't ask for technical details of specific detectors. 

For example, I may ask questions about scintillation detectors 
including how deep you would design one for a certain energy 
range, but I won't ask for the depth of the BABAR ECAL subdetector. 

The exam will be in 3 parts, one part set by each lecturer, and each 
part accounting for roughly 1/3 of the exam marks. 

The exam length will be 3 hours. Documents (including the PDG) are 
forbidden. Small ("college"-type) calculators are allowed, but not 
programmable calculators, smartphones, etc.

* Basic philosophy: there are some things that all HEP experimentalists should know -- you should know the jargon, be able to follow 
discussions of detectors, and be able to do quick, quantitative estimates of their performance (including knowing rough values for some 
key quantities). Memorising formulae is less important than understanding the principles behind them, and how they scale.
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Practicalities: Evaluation

1/3 of the final mark will be based on the written exam (on 16 
November) 

2/3 of the final mark will be based on the oral exam in 
December (your presentation, your responses in the Q&A/
discussion with the jury)
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Practicalities: Where to learn more
There are lots of sources of information on detector physics, 
depending on what you need. 

• A textbook if you need to get an overview, or understand 
the basic concepts. Should be copies in lab libraries. 
• Personal fave: "Techniques for Nuclear and Particle Physics 

Experiments" by W.R. Leo 
• Slides/notes from CERN lectures on detector physics for 

summer students, or from summer schools, for a 
pedagogical overview. 

• PDG reviews are a good place to go for more information 
on a topic and key formulae. (Lots of info, but very dense.) 

• Technical papers (physics.ins-det) for latest on a particular 
technology. 

• Detector performance papers and conference talks for a 
particular experiment's detector.

https://pdg.lbl.gov/2021/reviews/contents_sports.html
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Practicalities: Some textbooks
• Experimental Techniques in HEP, T. Ferbel, Ed. Frontiers in 

Physics (1991) 
• Techniques for Nuclear and Particle Physics Experiments, 2nd 

edition, W.R. Leo, Springer (1994) 
• Particle Detectors, 2nd edition, C. Grupen & B. Schwartz, CUP 

(2008) 
• Gaseous Radiation Detectors, F. Sauli, CUP (2014) 

Some references 

• Experimental techniques in HEP, T. Ferbel, Ed. Frontiers in Physics (1991) 
• Techniques for Nuclear and Particles Physics Experiments, 2nd edition, W. Leo, Springer (1994) 
• Particle Detectors, 2nd edition, C. Grupen & B. Schwartz, CUP (2008) 
• Detectors for Particles and Radiation, H. Schopper, Springer (2011) 
• Gaseous Radiation Detectors, F. Sauli, CUP (2014) 
• CERN Summer schools and summer students lessons on detectors… 

List of references from Sébastien Procureur
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Detector physics – NPAC 2021-2022
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Detector physics – NPAC 2021-2022

• What do we mean by a "detector"? 
• Why do we need/want one? 
• What kind of detector do we want? 
• How should it behave? 
• How does it really behave? 
• How does its performance affect our measurements? 
• ... and why should you care?
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An undergrad/M1 PP exam question

Past Particle Physics JH exam questions

That's a fine L3/M1-level question. No doubt you can all do it easily! 

But what would  look like experimentally? 
•How would we make a K0 meson? (→ accelerators lectures) 
•How do we know we have a real K0? 
•What particles can we actually detect? How do we do so? 
•What properties will we measure, and how well? How do we do that? 
•What kind (technology) of detector could we use? 

What are the options, and what are the advantages/disadvantages of each? 
•What sorts of backgrounds will there be? How do we suppress them? 

By the end of the course, you should be able to answer these kinds of question.

K0 → π+π−

(Question borrowed from Victoria Martin, Edinburgh ; source)

https://www2.ph.ed.ac.uk/~vjm/Lectures/ParticlePhysics2008.html
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Detector physics
• There are many kinds of detectors, and many, many actual 

detectors... 

• ... but they all rely on the same basic physics, i.e. how particles 
interact with matter. 
• We'll go through this in the next lecture. 

• You'll find that many detectors look different but actually rely 
on the same few tricks; once you understand the operating 
principles, you understand the detector. 

• That said, there are a lot of subtleties, and some conventions/
jargon to learn. 
• RPC, GEM, RICH, APD, blablabla. 
• And some of the "basic physics" is not so simple/obvious.
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Interactions of charged 
particles in matter
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How can a charged particle interact in matter?
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How can a charged particle interact in matter?

1) It can interact electromagnetically with an atomic electron 
and transfer energy to it. This can cause an excitation (electron 
moves to a higher orbital) or an ionisation (electron separated 
from the atom). Heavy particles will not be deflected much...

Excitation/ionisation
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Heavy particle not significantly deflected by an electron.

(Why is it not an elastic collision? Because the electron is in the electric field of the nucleus, so displacing/ejecting 
it means exchanging kinetic for potential energy. For a free electron this would be an elastic collision.)
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2) It can interact electromagnetically with a nucleus and be 
deflected (scattered) in an ~ elastic collision...

How can a charged particle interact in matter?
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Particle significantly deflected by heavier nucleus, ~ elastic 
collision, almost no energy transfer due to difference in mass.

Incoming particle
Heavy nucleus
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How can a charged particle interact in matter?

2) It can interact electromagnetically with a nucleus and be 
deflected (scattered) in an ~ elastic collision...
3) ... and it may emit radiation (bremsstrahlung, braking 
radiation) in the EM field of the nucleus, losing energy.

Brem
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4) Depending on conditions, it might emit EM radiation inside 
the medium (Cherenkov radiation), or at an interface between 
media (transition radiation). These don't significantly affect the 
total energy loss.

How can a charged particle interact in matter?



23

5) Other interactions are possible, depending on the particle 
type -- e.g. hadrons can interact strongly with the nucleus, or a 
positron can annihilate with an electron. These have a smaller 
cross-section but are often more violent. We'll come back to 
these later.

How can a charged particle interact in matter?
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Significant sources of energy loss:

• Coulomb interactions with atomic electrons (excitation/
ionisation)

• At higher  (meaning ≥ medium energy for electrons, very 
high energy for anything else), bremsstrahlung.

βγ

Excitation/ionisation

Brem
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Significant sources of deflection:

• Excitation/ionisation
• Bremsstrahlung (at high )
• Elastic scattering from nucleus

βγ

Excitation/ionisation

Brem

Scatter
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Energy loss of charged particles
• A particle moves a short distance dx through material. 

• It started with energy  and finished with energy  

• Change in energy is  

• The energy loss per unit length is 

 

• But that's just for one particle, and could fluctuate. We usually 
work with the mean/expected energy loss: 

 

• We'll often drop the ⟨ ⟩ here for simplicity, but they're still 
implied; using expected/average/mean energy loss.

Ei Ef

dE = Ef − Ei < 0

−
dE
dx

> 0

−⟨ dE
dx ⟩
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Energy loss and stopping power
• As we'll see shortly, it's convenient to work with stopping 

power, which is just dE/dx divided by the density: 

 

• Units of dE/dx are: MeV cm−1 
Units of stopping power are: MeV g−1 cm2 

• Here we'll write 

 

to distinguish them, but in the literature you'll often see 
stopping power written as "dE/dx". Watch the units closely to 
see which is which.

1
ρ ⟨ dE

dx ⟩

dE
dX

≡
1
ρ

dE
dx
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Energy loss for a heavy particle
• A particle moves a short distance dx through material. 

How do we calculate the expected energy loss? 

• It should depend on: 
• The parameters of the incoming particle 
• The properties of the target material 

• The general solution is a really hard problem, but we can make 
physics arguments to simplify the problem: 
• Assume the particle is heavy compared to the electrons, but 

not heavy compared to the nuclei. 
• Assume bremsstrahlung is negligible (for now). 
• Then the energy loss is dominated by inelastic Coulomb 

interactions with an atomic electron. 
• We know how electromagnetism works, so we can calculate 

the energy transfer (for a simple case).
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Coulomb energy transfer to one electron
• Initial assumptions: 

• Assume the electron is free and at rest. 
(It's not actually free, but just to calculate the energy transfer.) 

• Assume the electron does not move significantly during the interaction. 
(Thus, we only need to calculate the electric field at its initial position.) 

• Assume the incident heavy particle is undeviated from its initial path 
(since its mass M ≫ me) 

• With these assumptions, we can do a calculation using 
classical electromagnetism (per Bohr). 
• I will hand-wave some steps; if you want more, see Leo or Jackson. 
• You don't need to memorise this! But you should understand it. 

• It's going to give us the wrong answer, because these are not 
really classical pointlike objects and QM has an effect... 

• ... but it's close, and it's useful to see where things come from 
(and the limits of the assumptions' validity). 

• The real formula (Bethe-Bloch) follows shortly.
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Heavy particle of charge ze 

Electron

b = distance of closest approach (impact parameter)

The incoming particle starts at x=−∞ and travels to x=+∞ (i.e. far enough 
away that its field at the electron is negligible at start & end of path).
The electron is at x=0.
We wish to calculate the momentum transfer (impulse) to the electron.
Because the electron is assumed to be static during the interaction, the 
problem has a forward-backward symmetry and there will be no net impulse 
in the x direction. Thus, we only need to calculate the force in the y direction 
(perpendicular to the incoming particle's path).

x

y

Coulomb energy transfer to one electron
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Heavy particle at time t, at x=vt

Electron

b = distance of closest approach (impact parameter)

The impulse transfer can be calculated by brute force:
For symmetry, suppose the heavy particle passes through x=0 at t=0:

x

y

∫
+∞

−∞
F⊥(t) dt = 2∫

+∞

0
F⊥(t) dt = 2∫

+∞

0
F(t)

b

b2 + (vt)2
dt =

2 z e2

bv

F(t) =
qeqh

r2
=

ze2

b2 + (vt)2

Heavy particle of 
charge ze at t=−∞

r

(dropping factor of , ignoring signs)4πϵ0

Coulomb energy transfer to one electron
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Electron

b = distance of closest approach (impact parameter)

Alternatively, there's a nice proof using Gauss's law, applied to a cylinder 
whose axis is the particle's path and whose surface includes the electron:

x

y

r

I = ∫ F dt = e∫ E⊥ dt = e∫ E⊥
dt
dx

dx = e∫
E⊥

v
dx =

e
v ∫ E⊥ dx

But Gauss )
‹

S
E · dA = 4⇡ze

<latexit sha1_base64="q1VfMhT9MeS2M8tgR+6p7MogOuI="></latexit>

and dA = (2πb) dx

⇒ ∫ E⊥ 2πb dx = 4πze ⇒ ∫ E⊥ dx =
2ze
b

⇒ I =
e
v ∫ E⊥ dx =

2ze2

bv

Heavy particle of charge ze, speed v

v assumed constant

change variablesonly need perp 
component of field

(dropping factor of , ignoring signs)4πϵ0

Coulomb energy transfer to one electron
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• Either way, we get: 

 

where  is the momentum transfer from a heavy particle of 
charge ze, speed v, impact parameter b w.r.t. the electron. 

• The electron was initially free and at rest, so its KE gained is 

 

• This is the classical energy transfer for a single interaction. 

• Note that it depends on the particle charge ( ) and speed ( ), 
and on the impact parameter ( ), but not on the particle's 
mass (so long as ).

I =
2ze2

bv
I

T =
I2

2me
= ( 4z2e4

b2v2 ) 1
2me

=
2 z2 e4

me v2 b2

z2 1/v2

1/b2

M ≫ me

Coulomb energy transfer to one electron
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Coulomb energy transfer to electrons
• We've got the energy transfer for a heavy particle interacting 

with a single electron it passes in the material. 

• But there are many electrons! In principle our charged particle 
sees them all. How do we take them all into account? 
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Coulomb energy transfer to electrons
• We've got the energy transfer for a heavy particle interacting 

with a single electron it passes in the material. 

• But there are many electrons! In principle our charged particle 
sees them all. How do we take them all into account? 

• Let's consider a thin ring of material around 
the particle's path, of radial thickness db and 
longitudinal thickness dx: 

• The number of electrons in this ring is , where  
is the density of electrons in the material. 

• Each gets an energy transfer  

• So total energy transfer to the element is 

 

... so we just need to integrate db from 0 to ∞, right?

(2πb db dx)ne ne

T = 2 z2 e4/me v2 b2

dE =
4πz2e4

mev2
ne ( db

b ) dx

b b+db

dx
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Coulomb energy transfer to electrons
• We've got the energy transfer for a heavy particle interacting 

with a single electron it passes in the material. 

• But there are many electrons! In principle our charged particle 
sees them all. How do we take them all into account? 

• Let's consider a thin ring of material around 
the particle's path, of radial thickness db and 
longitudinal thickness dx: 

• The number of electrons in this ring is , where  
is the density of electrons in the material. 

• Each gets an energy transfer  

• So total energy transfer to the element is 

 

... so we just need to integrate db from 0 to ∞, right?

(2πb db dx)ne ne

T = 2 z2 e4/me v2 b2

dE =
4πz2e4

mev2
ne ( db

b ) dx

b b+db

dx
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Coulomb energy transfer to electrons

• If you try to integrate that from b=0 to b=∞, 
you will have divergence at both ends. 

• What went wrong? We didn't respect the initial assumptions. 
• b → 0: energy transfer is large (and thus electron would move during the 

interaction); also electrons not perfectly localised in QM 
• b → ∞: assumption that electron is static and interaction time is short is 

not valid; also screening; also electron orbital energy is quantised and we 
can't transfer an arbitrarily small amount. 

• How do we fix it? We integrate only over a physical range 
. This will give us a term like . 

• We'll estimate  and  shortly, but keep in mind that the 
energy loss only depends logarithmically on them, so the 
estimate just needs to be of the right order of magnitude.

(bmin, bmax) ln(bmax/bmin)
bmin bmax

b b+db

dx

dE =
4πz2e4

mev2
ne ( db

b ) dx
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Physical limits of Coulomb energy transfers
• For , there is an upper limit on the kinematically allowed 

energy transfer => a lower limit on b. 

• Classically, limit in head-on collision is  
or  taking relativity into account 

• This sets a cut-off on dE, which implies a cut-off on b of

 

• For , there is a lower limit on the physically allowed 
energy transfer, associated with the energy scale of the 
electron-nucleus binding (or the orbital frequency). 
• This sets a cut-off on b of  

bmin

2mev2

2γ2mev2

bmin =
ze2

γmev2

bmax

bmax =
γv
ν̄

where  is an average/typical value of the orbital frequency of 
the atomic electrons;  is known as the mean excitation 
potential [not related to momentum transfer  from earlier!]

ν̄
I = hν̄

I
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The Bohr Formula
Putting all of this together: 

 

Use a trick to relate electron density  to the mass density . 
• To a good approximation, 1 mol of C-12 weighs 12g, and the mass of an 

atomic scales almost linearly with its mass number A, so 1 mol of any 
atoms weighs about A grams. 

• Thus, 1g contains about (1/A) mol = (NA/A) atoms. 
• 1cm3 of any material weighs  grams, and thus contains about  

atoms, and thus about  electrons. 

So, finally, Bohr's (classical, wrong) formula is:   

−
dE
dx

=
4πz2e4

mev2
ne ln ( γ2mev3

ze2ν̄ )
ne ρ

ρ (ρNA/A)
(ZρNA/A)

−
dE
dx

=
4πz2e4

mev2

Z
A

ρNA ln ( γ2mev3

ze2ν̄ )
Aside: 

and (Z/A) is very roughly constant 
across all materials. This is why we 
use stopping power: to first order, 
it's independent of the material.

−
1
ρ

dE
dx

≃
Z
A

× f(z, v)

[Formulae from Leo]
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The Bohr Formula
Putting all of this together: 

 

Use a trick to relate electron density  to the mass density . 
• To a good approximation, 1 mol of C-12 weighs 12g, and the mass of an 

atomic scales almost linearly with its mass number A, so 1 mol of any 
atoms weighs about A grams. 

• Thus, 1g contains about (1/A) mol = (NA/A) atoms. 
• 1cm3 of any material weighs  grams, and thus contains about  

atoms, and thus about  electrons. 

So, finally, Bohr's (classical, wrong) formula is:   

−
dE
dx

=
4πz2e4

mev2
ne ln ( γ2mev3

ze2ν̄ )
ne ρ

ρ (ρNA/A)
(ZρNA/A)

−
dE
dx

=
4πz2e4

mev2

Z
A

ρNA ln ( γ2mev3

ze2ν̄ )
Aside: 

and (Z/A) is very roughly constant 
across all materials. This is why we 
use stopping power: to first order, 
it's independent of the material.

−
1
ρ

dE
dx

≃
Z
A

× f(z, v)

[Formulae from Leo]
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The Bethe-Bloch Formula
• That's nice, but it's wrong. What does a less wrong formula look 

like? 

 

Completely equivalent, alternative form: 

 

where the classical electron radius   (though be careful of convention for !)

−
1
ρ ⟨ dE

dx ⟩ =
2πz2e4

mev2

Z
A

NA [ln ( 2me γ2 v2 Wmax

I2 ) − 2β2 − δ − 2
C
Z ]

−
1
ρ ⟨ dE

dx ⟩ =
2πz2 r2

e me c2

β2

Z
A

NA [ln ( 2me γ2 v2 Wmax

I2 ) − 2β2 − δ − 2
C
Z ]

re =
1

4πϵ0

e2

mec2
4πϵ0

[Formulae from Leo. You don't need to memorise them, but you should understand them and 
know what terms are present and the rough scaling with key quantities such as Z, A, .]β
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The Bethe-Bloch Formula

 

• The main functional dependence (left) is very similar to Bohr! 
Some new terms and corrections: 
•  is the mean excitation potential of the material (~ ) -- n.b. not impulse 

•  is the maximum energy transfer in a single collision: 

 if  

•  is the density correction (polarisation/shielding effect that limits force 
exerted on distant electrons; important at high energies) 

•  is the shell correction parameter (taking into account that atomic 
electrons are not really at rest; important at low energies)

−
1
ρ ⟨ dE

dx ⟩ =
2πz2e4

mev2

Z
A

NA [ln ( 2me γ2 v2 Wmax

I2 ) − 2β2 − δ − 2
C
Z ]

I hν̄
Wmax

Wmax =
2mec2(βγ)2

1 + 2 me

M 1 + (βγ)2 + ( me

M )
2 ≈ 2mec2β2γ2 M ≫ me

δ

C

[Formulae from Leo. You don't need to memorise them, but you should understand them and 
know what terms are present and the rough scaling with key quantities such as Z, A, .]β
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The Bethe-Bloch Formula
 

• This is a complex formula. Different parts dominate in different 
kinematic regions; we'll go through them shortly. 

• As before, it's roughly constant across all materials (Z/A ~ const) 
and independent of the mass of the incoming heavy particle. 

• Note the prefactor of  : particles with more charge (e.g. 𝛼) 
will lose a lot more energy. 

• Approximate domain of validity: 
• Compact particles, light ions up to alpha [or heavier, with corrections] 
•  (particle velocity larger than electron velocity) 

•  (bremsstrahlung negligible) 
• Special case: channeling (particles following crystal channels in lattice) 

=> much lower dE/dx at very low angles of incidence

−
1
ρ ⟨ dE

dx ⟩ =
2πz2e4

mev2

Z
A

NA [ln ( 2me γ2 v2 Wmax

I2 ) − 2β2 − δ − 2
C
Z ]

z2

βγ ≳ 0.05
βγ ≲ 103
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The Bethe-Bloch Formula
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Figure from PDG; you should understand it and be able to describe its key features.

http://pdg.lbl.gov/
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http://pdg.lbl.gov/
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The Bethe-Bloch Formula
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Shell correction
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The Bethe-Bloch Formula
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First, dE/dx falls like β−2 (kinematic term)
• Faster particles feel electric force of atomic 

electron for shorter time

... then minimum ionizing particle: βγ ≈ 3
• Occurs around v = 0.96 c.
• Min value of stopping power is ~ same for all 

particles of same charge.

... then rises like ln(βγ) (relativistic rise)
• High energy particle: transverse electric field 

increases due to Lorentz transform Ey=γEy*. 
Thus interaction cross section increases.

... saturates at large βγ (density effect)
• Transverse electric field increased, interaction 

'far' from the particle track but polarization of 
the matter increases, thus the electric field is 
shielded. 
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The Bethe-Bloch Formula
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First, dE/dx falls like β−2 (kinematic term)
• Faster particles feel electric force of atomic 

electron for shorter time

... then minimum ionizing particle: βγ ≈ 3
• Occurs around v = 0.96 c.
• Min value of stopping power is ~ same for all 

particles of same charge.

... then rises like ln(βγ) (relativistic rise)
• High energy particle: transverse electric field 

increases due to Lorentz transform Ey=γEy*. 
Thus interaction cross section increases.

... saturates at large βγ (density effect)
• Transverse electric field increased, interaction 

'far' from the particle track but polarization of 
the matter increases, thus the electric field is 
shielded. 
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𝛽 → 1, 𝛾 ~ few, everything plateaus
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The Bethe-Bloch Formula
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First, dE/dx falls like β−2 (kinematic term)
• Faster particles feel electric force of atomic 

electron for shorter time

... then minimum ionizing particle: βγ ≈ 3
• Occurs around v = 0.96 c.
• Min value of stopping power is ~ same for all 

particles of same charge.

... then rises like ln(βγ) (relativistic rise)
• High energy particle: transverse electric field 

increases due to Lorentz transform Ey=γEy*. 
Thus interaction cross section increases.

... saturates at large βγ (density effect)
• Transverse electric field increased, interaction 

'far' from the particle track but polarization of 
the matter increases, thus the electric field is 
shielded. 
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The Bethe-Bloch Formula
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First, dE/dx falls like β−2 (kinematic term)
• Faster particles feel electric force of atomic 

electron for shorter time

... then minimum ionizing particle: βγ ≈ 3
• Occurs around v = 0.96 c.
• Min value of stopping power is ~ same for all 

particles of same charge.

... then rises like ln(βγ) (relativistic rise)
• High energy particle: transverse electric field 

increases due to Lorentz transform Ey=γEy*. 
Thus interaction cross section increases.

... saturates at large βγ (density effect)
• Transverse electric field increased, interaction 

'far' from the particle track but polarization of 
the matter increases, thus the electric field is 
shielded. 
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Density correction
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The Bethe-Bloch Formula
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•Above "critical energy", 
radiative processes dominate 
[more on these soon].

•Remember: Bethe-Bloch 
ONLY covers energy loss by 
Coulomb interactions with 
atomic electrons, not (e.g.) 
radiative interactions in field 
of nuclei.
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Minimum Ionising Particles (MIPs)
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Concept of MIP is useful: particles in this range 
lose energy slowly, and mean stopping power 
(thus dE/dx) is well known. Often use them for 
calibration.
Minimum is around βγ ≈ 3 (β ≈ 0.96), i.e.

Electrons/positrons: p ~ 1-2 MeV
Muons: p ~ 0.3 GeV
Pions: p ~ 0.4 GeV
Protons: p ~ 2-3 GeV

Around this βγ, stopping power for all singly 
charged particles in nearly any material is:

−
1
ρ ⟨ dE

dx ⟩
MIP

≈ (1 − 2) MeV g−1 cm2

5 34. Passage of Particles Through Matter

rare events with large single-collision energy losses. Even with samples of hundreds of events in a
typical detector, the mean energy loss cannot be obtained dependably. Far better and more easily
measured is the most probable energy loss, discussed in Sec. 34.2.9. The most probable energy loss
in a typical detector is considerably smaller than the mean given by the Bethe equation. It does
not continue to rise with the mean stopping power, but approaches a “Fermi plateau.”

 1

 2

 3

 4

 5

 6

 8

10

1.0 10 100 1000 10 0000.1

Pion momentum (GeV/c)

Proton momentum (GeV/c)

1.0 10 100 10000.1

1.0 10 100 10000.1

βγ = p/Mc

Muon momentum (GeV/c)

H2 liquid

He gas

C
Al

Fe
Sn

Pb〈–
d
E

/d
x〉

 (
M

eV
 g

—
1
cm

2
)

1.0 10 100 1000 10 0000.1

Figure 34.2: Mean energy loss rate in liquid (bubble chamber) hydrogen, gaseous helium, carbon,
aluminum, iron, tin, and lead. Radiative e�ects, relevant for muons and pions, are not included.
These become significant for muons in iron for —“ & 1000, and at lower momenta for muons in
higher-Z absorbers. See Fig. 34.23.

In analysing TPC data (Sec. 35.6.5), the same end is often accomplished by using the mean of
50%–70% of the samples with the smallest signals as the estimator.

Although it must be used with cautions and caveats, ÈdE/dxÍ as described in Eq. (34.5) still
forms the basis of much of our understanding of energy loss by charged particles. Extensive tables
are available [4, 5] and pdg.lbl.gov/AtomicNuclearProperties/.

For heavy projectiles, like ions, additional terms are required to account for higher-order photon
coupling to the target, and to account for the finite target radius. These can change dE/dx by a
factor of two or more for the heaviest nuclei in certain kinematic regimes [9].

The function as computed for muons on copper is shown as the “Bethe” region of Fig. 34.1.

1st June, 2020 8:29am

Figure from PDG

[You should know approximately the numbers in blue!]

http://pdg.lbl.gov/
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Identifying particles with dE/dx

• Often, we have one piece of kinematic information about a 
particle but we don't know its identity. 
• e.g. we measured its momentum from curvature in B-field 

• Bethe-Bloch relates energy loss to kinematics, so by measuring 
dE/dx we get a second piece of information. 
• e.g. at O(GeV), dE/dx gives 

βγ, and with |p| => mass 

• dE/dx depends on βγ and z of 
particle, but not on its mass. 

• Discrete ambiguities, e.g. here 

• ... and  so this won't 
separate those so well.

mπ ∼ mμ

−
1
ρ ⟨ dE

dx ⟩ =
2πz2e4

mev2

Z
A

NA [ln ( 2me γ2 v2 Wmax

I2 ) − 2β2 − δ − 2
C
Z ]

From the NA61 experiment
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HOW IT’S USED
• An example of how « dE/dx » is used: 

identification of ions with « ∆E-E » method
• At low energy limit: , we can show that 

 , with 

• With a thin detector of thickness ∆x, we 
measure the energy loss ∆E

• In a second detector, we measure all the 
remaining energy E

• In a graphic ∆E-E, we obtain hyperbolas 

β ≪ 1
− dE

dx
∝ z2M

Ec
Ec = 1

2 Mv2

ΔE ∝ z2MΔx
Ec

13
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Identifying particles with dE/dx

• Another example: at lower energy ( ), we have 

, with classical kinetic energy  

• To identify heavy ions, can use thin + thick detectors:

β ≪ 1
dE
dx

∝
z2

v2
∝

z2M
T

T =
1
2

Mv2

−
1
ρ ⟨ dE

dx ⟩ =
2πz2e4

mev2

Z
A

NA [ln ( 2me γ2 v2 Wmax

I2 ) − 2β2 − δ − 2
C
Z ]

Δx Thick (full energy loss)

via J. Bolmont

• Energy in thin detector  

• Energy in thick detector  

• Plot  vs , get hyperbolas (~1/E) with 
coefficient giving , i.e. identity of ion

ΔE ∝ z2M/T
E ∼ T − ΔE

ΔE E
z2M

ΔE E
(Modern versions uses more exact expressions, 
e.g. correcting for straggling, but same basic idea.)
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Bethe-Bloch: An important limitation
−

1
ρ ⟨ dE

dx ⟩ =
2πz2e4

mev2

Z
A

NA ln ( 2me γ2 v2 Wmax

I2 ) − 2β2 − δ − 2
C
Z

•This formula gives the mean (expected) energy loss.
• It says nothing about the variation in energy loss.

• Energy transfer of individual collisions varies (in classical model, 
because of variation in impact parameter b to electrons) 
• Occasional very large energy transfers:  electrons ( -rays) 

• Number of collisions can vary (~ Poisson) 

•This is a difficult problem to solve in general, especially when 
collisions are not independent

• (that is, if dE/dx in the Nth collision depends on particle energy, which 
depends on how much energy was lost in prior collisions) 

•There are some regimes where we have good 
approximations or models.

δ δ
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Energy loss distribution
•Simplest case: absorber is thick but not very thick.

• Thick => number of collisions is large => fluctuations in per-collision 
energy loss average out.

• Not too thick => energy and  are constant
• Under these conditions, energy loss distribution is Gaussian  

(and function is known, see Leo but roughly ).

• If absorber is thin but not very thin, energy loss distribution is 
asymmetric. Well-known model by Landau (figure).

⟨dE/dx⟩

σ2 ∝ Δx ρZ/A

12 34. Passage of Particles Through Matter
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Figure 34.7: Electronic energy deposit distribution for a 10 GeV muon traversing 1.7 mm of silicon,
the stopping power equivalent of about 0.3 cm of PVT-based scintillator [1, 11, 32]. The Landau-
Vavilov function (dot-dashed) uses a Rutherford cross section without atomic binding corrections
but with a kinetic energy transfer limit of Wmax. The solid curve was calculated using Bethe-Fano
theory. M0(∆) and M1(∆) are the cumulative 0th moment (mean number of collisions) and 1st
moment (mean energy loss) in crossing the silicon. (See Sec. 34.2.1). The fwhm of the Landau-
Vavilov function is about 4› for detectors of moderate thickness. ∆p is the most probable energy
loss, and È∆Í divided by the thickness is the Bethe ÈdE/dxÍ.

The distribution function for the energy deposit by a 10 GeV muon going through a detector of
about this thickness is shown in Fig. 34.7. In this case the most probable energy loss is 62% of the
mean (M1(È∆Í)/M1(Œ)). Folding in experimental resolution displaces the peak of the distribution,
usually toward a higher value. 90% of the collisions (M1(È∆Í)/M1(Œ)) contribute to energy deposits
below the mean. It is the very rare high-energy-transfer collisions, extending to Wmax at several
GeV, that drives the mean into the tail of the distribution. The large weight of these rare events
makes the mean of an experimental distribution consisting of a few hundred events subject to
large fluctuations and sensitive to cuts. The mean of the energy loss given by the Bethe equation,

Eq. (34.5), is thus ill-defined experimentally and is not useful for describing energy loss by single

particles.4 It rises as ln “ because Wmax increases as “ at high energies. The most probable energy

loss should be used.

A practical example: For muons traversing 0.25 inches (0.64 cm) of PVT (polyvinyltolulene)
based plastic scintillator, the ratio of the most probable E loss rate to the mean loss rate via the
Bethe equation is [0.69, 0.57, 0.49, 0.42, 0.38] for Tµ = [0.01, 0.1, 1, 10, 100] GeV. Radiative losses
add less than 0.5% to the total mean energy deposit at 10 GeV, but add 7% at 100 GeV. The
most probable E loss rate rises slightly beyond the minimum ionization energy, then is essentially
constant.

The Landau distribution fails to describe energy loss in thin absorbers such as gas TPC cells [1]
and Si detectors [30], as can be seen e.g. in Fig. 1 of Ref. [1] for an argon-filled TPC cell. Also
see Talman [31]. While ∆p/x may be calculated adequately with Eq. (34.12), the distributions are

4It does find application in dosimetry, where only bulk deposit is relevant.

1st June, 2020 8:29am

Figure from PDG

•Occasionally, an interaction 
has very large energy transfer 
=> long tail

•Note that the most probable 
value  (peak) is very 
different from the mean .

• If very thin, Landau fails too.

Δp
⟨Δ⟩

(Gaseous detectors need special treatment.)

http://pdg.lbl.gov/
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Calculations vs measurements

•Bethe-Bloch => we know how to calculate the mean energy 
loss, but because of those fluctuations it's hard to measure 
precisely.

•Experimentally, it's often much easier to measure the most 
probable value.

12 34. Passage of Particles Through Matter

f(
Δ

) 
 [

M
eV

−
1
]

Electronic energy loss Δ  [MeV]

Energy loss  [MeV cm2/g]

150

100

50

0
0.4 0.5 0.6 0.7 0.8 1.00.9

0.8

1.0

0.6

0.4

0.2

0.0

M
j(
Δ

) /
M
j(
∞

)

Landau-Vavilov
Bichsel (Bethe-Fano theory)

Δp Δ

fwhm

M0(Δ)/M0(∞)

Μ1(Δ)/Μ1(∞)

10 GeV muon
1.7 mm Si

1.2 1.4 1.6 1.8 2.0 2.2 2.4

< >

Figure 34.7: Electronic energy deposit distribution for a 10 GeV muon traversing 1.7 mm of silicon,
the stopping power equivalent of about 0.3 cm of PVT-based scintillator [1, 11, 32]. The Landau-
Vavilov function (dot-dashed) uses a Rutherford cross section without atomic binding corrections
but with a kinetic energy transfer limit of Wmax. The solid curve was calculated using Bethe-Fano
theory. M0(∆) and M1(∆) are the cumulative 0th moment (mean number of collisions) and 1st
moment (mean energy loss) in crossing the silicon. (See Sec. 34.2.1). The fwhm of the Landau-
Vavilov function is about 4› for detectors of moderate thickness. ∆p is the most probable energy
loss, and È∆Í divided by the thickness is the Bethe ÈdE/dxÍ.

The distribution function for the energy deposit by a 10 GeV muon going through a detector of
about this thickness is shown in Fig. 34.7. In this case the most probable energy loss is 62% of the
mean (M1(È∆Í)/M1(Œ)). Folding in experimental resolution displaces the peak of the distribution,
usually toward a higher value. 90% of the collisions (M1(È∆Í)/M1(Œ)) contribute to energy deposits
below the mean. It is the very rare high-energy-transfer collisions, extending to Wmax at several
GeV, that drives the mean into the tail of the distribution. The large weight of these rare events
makes the mean of an experimental distribution consisting of a few hundred events subject to
large fluctuations and sensitive to cuts. The mean of the energy loss given by the Bethe equation,

Eq. (34.5), is thus ill-defined experimentally and is not useful for describing energy loss by single

particles.4 It rises as ln “ because Wmax increases as “ at high energies. The most probable energy

loss should be used.

A practical example: For muons traversing 0.25 inches (0.64 cm) of PVT (polyvinyltolulene)
based plastic scintillator, the ratio of the most probable E loss rate to the mean loss rate via the
Bethe equation is [0.69, 0.57, 0.49, 0.42, 0.38] for Tµ = [0.01, 0.1, 1, 10, 100] GeV. Radiative losses
add less than 0.5% to the total mean energy deposit at 10 GeV, but add 7% at 100 GeV. The
most probable E loss rate rises slightly beyond the minimum ionization energy, then is essentially
constant.

The Landau distribution fails to describe energy loss in thin absorbers such as gas TPC cells [1]
and Si detectors [30], as can be seen e.g. in Fig. 1 of Ref. [1] for an argon-filled TPC cell. Also
see Talman [31]. While ∆p/x may be calculated adequately with Eq. (34.12), the distributions are

4It does find application in dosimetry, where only bulk deposit is relevant.

1st June, 2020 8:29am

Figure from PDG

http://pdg.lbl.gov/
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How far can particles travel?
•Bethe-Block tells us mean energy loss, .
• Fluctuations in energy loss => calculating distribution of how 

far a particle travels in material (its range, R) is not easy*.
•But if you assume energy loss is continuous, you can 

integrate formula for certain cases:
• Low-energy hadrons (R < interaction length, see later)
• Muons not dominated by radiation (below few hundred GeV)

•As particles slow down, dE/dx increases => energy loss 
spikes at the end of particle's path (Bragg peak).

• Important application in cancer 
treatment: proton & hadron  
therapy (energy delivery is 
concentrated at the target).

⟨dE/dx⟩

Public domain, via Wikipedia
* There's a tail in the range distribution from particles that 
travel further than average. Jargon: this is called "straggling".
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Electrons & positrons
• So far we've discussed Coulomb scattering for particles heavy 

relative to atomic electron targets, i.e. nearly everything. 
• ... but what about electrons & positrons? Two complications: 

1) Some of the assumptions behind the Bohr/Bethe-Bloch calculations are 
broken (e.g. that incoming particle isn't deflected because it's heavy; also 
implicit assumption that the particles are non-identical breaks for electron-
electron scattering) 

2) We only considered energy loss from Coulomb scattering on atomic 
electrons. For , energy loss from radiation becomes important even at 
moderate energies. 

• To fix these, we need to 
1) Correct the Bethe-Bloch formula for the case of  
2) Include another term for radiation energy loss 

 

e±

e±

( dE
dx )

total
= ( dE

dx )
Bethe−Bloch

+ ( dE
dx )

radiation
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Electrons & positrons: Coulomb term
Bethe-Bloch for heavy particles: 

 

Bethe-Bloch corrected for  (with ): 

 

where  for kinetic energy T, and: 

for electrons,  

for positrons, 

−
1
ρ ⟨ dE

dx ⟩ =
2πz2 r2

e me c2

β2

Z
A

NA [ln ( 2me γ2 v2 Wmax

I2 ) − 2β2 − δ − 2
C
Z ]

e± z2 = 1

−
1
ρ ⟨ dE

dx ⟩ =
2πr2

e me c2

β2

Z
A

NA [ln ( τ2(τ + 2)
2(I/mec2)2 ) + F(τ) − δ − 2

C
Z ]

τ ≡ T/(mec2)

F(τ) = 1 − β2 + fe(τ)

F(τ) = 2 ln 2 −
23
12

β2 + β2 fp(τ)

[Formulae from Leo]

(see Leo or other texts for the full 
functional form; again, you don't need 
to memorise the full expressions)
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Electrons & positrons: Bremsstrahlung 

[Complete formulae are long and messy. If you need to calculate a value, see PDG review or a textbook.]

• Bremsstrahlung (braking radiation): a 
charged particle scatters in the electric 
field of a nucleus and emits a photon. 

• Can only happen in matter, not in vacuum. 

• Cross-section scales like  for incident particle mass M 
• This is why brem is much more severe for , e.g.  

•  can be up to full energy of , but skews to lower energy. High-
energy brem can have a big impact on particle's path, final energy.  

• Mean energy loss is difficult to calculate exactly (depends on 
atomic parameters, particularly screening) but at first order for 
particles of energy E and mass M in material (A,Z) it goes like: 

σ ∝ 1/M2

e± (mπ /me)2 ∼ 105

Eγ e±

−
1
ρ ( dE

dx )
rad

∝
NA

A
E Z2

M2

nucleus nucleus
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Electrons & positrons: Bremsstrahlung 

* For , Coulomb term goes like  in the 
relevant energy range. (For heavier particles, the log 
term is important but dE/dx is still rising a lot slower 
than linearly with E, so general argument still holds.)

e± 1/β2

• Compare energy loss from Coulomb inelastic term vs radiation 
for relativistic electrons/positrons* at first order: 

                         −
1
ρ ( dE

dx )
Coulomb

∝
Z
β2

−
1
ρ ( dE

dx )
rad

∝
NA

A
E Z2

M2

18 34. Passage of Particles Through Matter

Table 34.2: Tsai’s Lrad and LÕ
rad, for use in calculating the radiation

length in an element using Eq. (34.25).

Element Z Lrad LÕ
rad

H 1 5.31 6.144
He 2 4.79 5.621
Li 3 4.74 5.805
Be 4 4.71 5.924

Others > 4 ln(184.15 Z≠1/3) ln(1194 Z≠2/3)

Figure 34.11: Fractional energy loss per radiation length in lead as a function of electron or positron
energy. Electron (positron) scattering is considered as ionization when the energy loss per collision
is below 0.255 MeV, and as Møller (Bhabha) scattering when it is above. Adapted from Fig. 3.2
from Messel and Crawford, Electron-Photon Shower Distribution Function Tables for Lead, Copper,

and Air Absorbers, Pergamon Press, 1970. Messel and Crawford use X0(Pb) = 5.82 g/cm2, but we
have modified the figures to reflect the value given in the Table of Atomic and Nuclear Properties
of Materials (X0(Pb) = 6.37 g/cm2).

34.4.3 Bremsstrahlung energy loss by e±

At very high energies and except at the high-energy tip of the bremsstrahlung spectrum, the
cross section can be approximated in the “complete screening case” as [42]

d‡/dk = (1/k)4–r2
e

)
(4

3 ≠ 4
3y + y2)[Z2(Lrad ≠ f(Z)) + Z LÕ

rad]
+ 1

9(1 ≠ y)(Z2 + Z)
*

, (34.28)

where y = k/E is the fraction of the electron’s energy transferred to the radiated photon. At
small y (the “infrared limit”) the term on the second line ranges from 1.7% (low Z) to 2.5% (high

1st June, 2020 8:29am

• Cross-over point is known as 
the critical energy,  

 : Coulomb dominates 
 : Radiation dominates 

• Ec depends on the material 
• Approximately, for , 

Ec
E < Ec
E > Ec

e±

Ec ≈
800 MeV
Z + 1.2

∼ 101 to 102 MeV

Caution: this is not the only definition of the critical energy. 
They're all similar within a factor of order 1, but you will see 
slightly different numbers. Will come back to this when 
discussing EM showers. You should know how it's defined, 
and the rough magnitude.
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Radiation length
• Radiation length X0 is defined as the distance over which 

electron/positron energy is reduced by a factor of 1/e due to 
brem radiation losses only. This works because: 

 

• Note connection between X0 and brem energy loss: 
,  so using formula from previous slide:  at first order 

• Empirical formulae exist (Sec 34.4 of PDG) but for most materials 
you'd look up the value in the PDG or other data table. 
Caution: often an implicit factor of  (e.g. for Pb, X0 is 0.56cm or 6.37 g cm−2) 

• A typical EM calorimeter for a particle physics experiment has a 
depth of 20-30 X0, i.e. enough to fully contain most showers.

−
1
ρ ( dE

dx )
rad

∝ ( NA Z2

AM2 ) E ⇒
dE
dx

∝ − E ⇒ E(x) = E0 e−x/X0

dE
dx

= −
E
X0

X0 ∝
A

ρZ2

ρ

Examples:
[PDG, Leo]

W: 0.35 cm PbO: 1.27 cm Water: 36 cm
Pb: 0.56 cm Fe: 1.76 cm Polystyrene: 43 cm

PbWO4: 0.89 cm NaI: 2.59 cm Air: 300m
(BGO): 1.12 cm Al: 8.9 cm
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Radiation length
• Radiation length X0 is defined as the distance over which 

electron/positron energy is reduced by a factor of 1/e due to 
brem radiation losses only. This works because: 

 

• Note connection between X0 and energy loss: 
,  so using formula from previous slide:  at first order 

• Empirical formulae exist (Sec 34.4 of PDG) but for most materials 
you'd look up the value in the PDG or other data table. 
Caution: often an implicit factor of  (e.g. for Pb, X0 is 0.56cm or 6.37 g cm−2) 

• A typical EM calorimeter for a particle physics experiment has a 
depth of 20-30 X0, i.e. enough to fully contain most showers.

−
1
ρ ( dE

dx )
rad

∝ ( NA Z2

AM2 ) E ⇒
dE
dx

∝ − E ⇒ E(x) = E0 e−x/X0

dE
dx

= −
E
X0

X0 ∝
A

ρZ2

ρ

Examples:
[PDG, Leo]

W: 0.35 cm PbO: 1.27 cm Water: 36 cm
Pb: 0.56 cm Fe: 1.76 cm Polystyrene: 43 cm

PbWO4: 0.89 cm NaI: 2.59 cm Air: 300m
(BGO): 1.12 cm Al: 8.9 cm
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Aside: interaction length
• [Nuclear] interaction length  is a loose analog of radiation 

length for strong/nuclear interactions of hadrons with nuclei. 

• I'm not going to talk much about those here -- you'll hear more 
about them in the calorimeter lectures. (Just mentioning it here 
for completeness.) 

• The interaction length represents the mean free path of a high-
energy hadron between inelastic hadronic collisions. 

• Applies to both charged and neutral hadrons. 

• Interaction length can be much longer than radiation length, e.g. 
for lead  but 

λI

X0(Pb) ≈ 0.56 cm λI(Pb) ≈ 17.6 cm
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Multiple scattering
•So far, we've talked about interactions with atomic electrons, 

and how they can cause energy loss (but minimal deflection).
•Particles can also undergo Coulomb scattering from 

nuclei. These collisions are ~ elastic but 
can deflect the particle.

•What's the angular distribution of particles 
after passing through matter?

•For a single, individual nuclear scatter the angular distribution 
is well known [neglecting spin, screening]: Rutherford formula

• i.e. mostly small angles but occasional large-angle scatters.
•For very thin absorbers, this is enough. Tricky case: finite 

thickness where multiple scattering can occur.

dσ
dΩ

= z2
1z2

2r2
e ( mec

βp )
2 1

4 sin4(θ/2)
∝

1
sin4(θ/2)
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15 34. Passage of Particles Through Matter

the projected angular distribution, with an rms width given by Lynch & Dahl [40]:

◊0 = 13.6 MeV
—cp

z
Ú

x

X0

C

1 + 0.088 log10( x z2

X0—2 )
D

= 13.6 MeV
—cp

z
Ú

x

X0

C

1 + 0.038 ln( x z2

X0—2 )
D

(34.16)

Here p, —c, and z are the momentum, velocity, and charge number of the incident particle, and
x/X0 is the thickness of the scattering medium in radiation lengths (defined below). This takes into
account the p and z dependence quite well at small Z, but for large Z and small x the —-dependence
is not well represented. Further improvements are discussed in Ref. [40].

Eq. (34.16) describes scattering from a single material, while the usual problem involves the
multiple scattering of a particle traversing many di�erent layers and mixtures. Since it is from a fit
to a Molière distribution, it is incorrect to add the individual ◊0 contributions in quadrature; the
result is systematically too small. It is much more accurate to apply Eq. (34.16) once, after finding
x and X0 for the combined scatterer.

x

splane
yplane

Ψplane

θplane

x /2

Figure 34.10: Quantities used to describe multiple Coulomb scattering. The particle is incident in
the plane of the figure.

The nonprojected (space) and projected (plane) angular distributions are given approximately
by [34]

1
2fi ◊2

0
exp

Y
___[≠

◊2
space
2◊2

0

Z
___\ dœ, (34.17)

1Ô
2fi ◊0

exp
Y
____[≠

◊2
plane
2◊2

0

Z
____\ d◊plane, (34.18)

where ◊ is the deflection angle. In this approximation, ◊2
space ¥ (◊2

plane,x + ◊2
plane,y), where the x

and y axes are orthogonal to the direction of motion, and dœ ¥ d◊plane,x d◊plane,y. Deflections into
◊plane,x and ◊plane,y are independent and identically distributed. Fig. 34.10 shows these and other
quantities sometimes used to describe multiple Coulomb scattering. They are

Â rms
plane = 1Ô

3
◊ rms

plane = 1Ô
3

◊0, (34.19)
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Figure from PDG

MULTI PLE SCATTERING OI" 15.7 —MEV ELECTRONS 635

The arrangement can be described briefly as follows:
A monoenergetic 15.7-Mev electron beam was focused
upon a scattering foil. at the center of a scattering
chamber 20 inches in diameter. The converging cone of
electrons had a full angular width of about 1, and was
focused to a spot about 0.08 inch in diameter. The
scattered electrons were se1ected by means of a ~'~-inch
hole in a -„'-inch thick lead plate, placed about 10 inches
from the scattering foil, After passing through this
aperture, the electrons were deQected by an analyzer
magnet into a large ionization chamber. The exit port
on the analyzer was enlarged so that all electrons whose
energy was within 6 percent of the maximum energy
entered the ionization chamber.
The incident current was measured by means of a

faraday cage connected to a vacuum tube electrometer.
This current was maintained at a constant value
throughout the experiment. The scattered current was
measured by a vibrating reed electrometer connected
to the ionization chamber.
At small angles, it was necessary to remove the

faraday cage from the forward direction, since it would
have intercepted the scattered beam. This was done by
remote control, so that a measure of the incident current
could be obtained immediately before and after each
measurement of the scattered current.
Measurements of the angular distribution were made

on both sides of the incident beam for two gold and two
beryllium foils from 0' to 6', using the ~'~-inch aperture.
Measurements of the scattering from the gold foils were
extended from 6' to 30' with the larger aperture used
in the electron-electron scattering work (0.269X1.00-
inch). The scattering by the beryllium foils at the
larger angles was not measured, since the analyzer would
have excluded the electrons scattered by atomic elec-
trons, giving results which would not be directly com-
parable to measurements at small angles.
No corrections have been made for the angular width

of the incident beam, as this width was small enough
to have a negligible eBect on the observed distributions.

RESULTS AND COMPARISON WITH THEORY

The observed distributions of electrons scattered by
two gold foils are shown in Fig. i. The measurements
were made using the small aperture. The data were
normalized so as to present the fractional scattering per
unit solid angle in square degrees. The solid lines in the
figure represent the distribution calculated from the
theory of Moliere. It can be seen that the agreement in
the angular range given in the figure is very good. The
broken lines indicate how the first term of Moliere's
formulation, the gaussian function exp(—0'/Bx'),
deviates from the more complete theory.
The distributions represented by the solid line can,

however, be approximated quite accurately by a renor-
malized, slightly narrower gaussian which fits the experi-
mental results very well up to angles (w) where the
intensity is 1/e of the maximum. This 1/e width can be

.04
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FIG. 1. Distribution of 1.5.7-Mev electrons passing through two
thin gold foils in the region from 0' to 6'. The solid lines represent
the theory of Moliere. The dotted lines represent the 6rst term
of Moliere, which is a gaussian having a width in agreement with
the older theories.

obtained from the theory and is given to a good approxi-
mation by

where

w= x,(B—1.2) l (spatial),
w= x,(B—0.7)& (projected),

(1)
(2)

x =AZ&/pao. (6)
For low Z, the Born approximation is valid and the dif-
ference between the two theories is slight. For high Z,

H. Snyder and W. T. Scott, Phys. Rev. 76, 220 (1949).

x,' = 47r.V(Z'+ Z) e'/p'v', (3)

y,'= (hZt/0. 885pao)'L1. 13+3.76(Z/137p)'] (4)

b 7eB/6B x 2/x 2

where 1V is the number of atoms/cm', p and v the
momentum and velocity of the incident electrons, and
ao——h'/me' is the Bohr radius of hydrogen. The effect
of electron-electron collisions is taken into account by
using Z'+Z instead of Z' in Eq. (3). Qb can be seen to
be proportional to the thickness and corresponds to
the number of collisions in passing through the foil.
It might be pointed out that the projected distribu-

tion given by Moliere is essentially the same as that
calculated by Snyder and Scott' if the number of col-
lisions is defined in the same way. Snyder and Scott's
expression for the number of collisions is defined by the
same equation if x is determined in terms of the Born
approximation solution to the scattering for exponential
screening, namely

Hanson et all, PRD 84, 634 (1951)
15.7 MeV electrons on thin gold foil

Dashed line: Gaussian

Non-Gaussian 
tail

• Finite width case is kind of a mess.
•For a thick absorber where many nuclear 

scatters expected, can model as Gaussian core (from many 
small-angle scatters) plus longer tails where angle is 
dominated by a single large-angle scatter.

•Track fitters need to allow for correlated fluctuations due to 
multiple scattering, e.g. using Kalman fitter.
• Note that this is different from hit measurement resolution, 

i.e. independent random errors.

Multiple scattering

http://pdg.lbl.gov/
https://doi-org.ezproxy.cern.ch/10.1103/PhysRev.84.634
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Charged 
particles

Light: electrons 
(and positrons)

Heavier: 
everything else*

• Bremsstrahlung dominates @  
E > 20 MeV

• Inelastic scattering with atoms 
(ionization)

• Elastic scattering with nucleons
• Cherenkov radiation & transition 
radiation

• Nuclear reactions

• Inelastic scattering with atoms: 
Bethe&Block formula (σ ~ 10−16 
cm2)

• Elastic scattering with nucleons
• Cherenkov radiation & transition 
radiation

• Nuclear reactions
• Bremsstrahlung

* Muons, pions, kaons, protons, ions, charged 
hyperons, ...

Summary
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[end of lecture]
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Example exam questions 
from previous years

Note: The exam format has changed over time, and the syllabus has 
also evolved somewhat. The point is not to give you the exact style 
or content of this year's questions, but to help you prepare.
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Exam questions
From 2021: Q1 (approx. 10–15 min)

LHCb has recently found 3� evidence of tension with the Standard Model when
comparing the rates of the two processes B+ ! K+µ+µ� and B+ ! K+e+e�.
While the underlying physics of these two channels should be very similar in
the SM, the behaviour of the final-state particles in the detector di↵ers. (The
typical momentum of the B+ mesons is 10–100 GeV.)

(a) List the key detector elements/subdetectors necessary to determine the
following for the final-state particles:

(i) its momentum,

(ii) whether it is an electron, muon, or kaon.

[Treat (i) and (ii) separately. You do not need to propose particular tech-
nologies; it is su�cient to list subdetector/subsystem types.]

The momentum resolution of the e+e� system is significantly worse than that
of the µ+µ� system (when measuring both in the same LHCb subdetectors).
This is due to the e↵ect of an additional physical process that is negligible for
muons but not for electrons.

(b) Identify this process.

(c) Suggest a way in which information from another subdetector might be
used to help recover some or all of this degradation.

(d) When designing a future detector, what could you change in order to reduce
this e↵ect as much as possible? (i.e. what is the key quantity/parameter
that determines the magnitude of the e↵ect?)

Q2 (approx. 15 min)

Consider the plot of mass stopping power below, as well as the following con-
stants:

• Density of copper: ⇢ = 8.96 g cm�3

• Radiation length of copper: X0 = 12.86 g cm�2

• Atomic number of copper Z = 29, and mean mass number A ⇡ 63.5

• Critical energy of copper: Ec = 24.8MeV

1

[This part is as much 
about detector design in 
general as specifically on 

interactions of charged 
particles with matter.]

[ditto]
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Exam questions

Q1 (approx. 10–15 min)

LHCb has recently found 3� evidence of tension with the Standard Model when
comparing the rates of the two processes B+ ! K+µ+µ� and B+ ! K+e+e�.
While the underlying physics of these two channels should be very similar in
the SM, the behaviour of the final-state particles in the detector di↵ers. (The
typical momentum of the B+ mesons is 10–100 GeV.)

(a) List the key detector elements/subdetectors necessary to determine the
following for the final-state particles:

(i) its momentum,

(ii) whether it is an electron, muon, or kaon.

[Treat (i) and (ii) separately. You do not need to propose particular tech-
nologies; it is su�cient to list subdetector/subsystem types.]

The momentum resolution of the e+e� system is significantly worse than that
of the µ+µ� system (when measuring both in the same LHCb subdetectors).
This is due to the e↵ect of an additional physical process that is negligible for
muons but not for electrons.

(b) Identify this process.

(c) Suggest a way in which information from another subdetector might be
used to help recover some or all of this degradation.

(d) When designing a future detector, what could you change in order to reduce
this e↵ect as much as possible? (i.e. what is the key quantity/parameter
that determines the magnitude of the e↵ect?)

Q2 (approx. 15 min)

Consider the plot of mass stopping power below, as well as the following con-
stants:

• Density of copper: ⇢ = 8.96 g cm�3

• Radiation length of copper: X0 = 12.86 g cm�2

• Atomic number of copper Z = 29, and mean mass number A ⇡ 63.5

• Critical energy of copper: Ec = 24.8MeV
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(a) Estimate the thickness of copper required to stop a 10GeV beam of muons.

(b) Estimate the thickness of copper required to stop a 10GeV beam of elec-
trons.

[Justify your answers. Approximate estimates, good to within a factor of two
or so, are fine. It is enough to find the thickness that will stop the majority of
the beam; you do not need to consider stragglers.]

Q3 (approx. 10–15 min)

We wish to study photons of energy E� between 10 eV and 10 keV. We use a
thin plate of material.

(a) What is the most probable way for the photons to interact with the ma-
terial? Identify the process and draw a Feynman diagram (including all
participating particles).

(b) We have plates of various materials available (e.g. Si, Cu, Fe, Pb, ...),
and plan to study how the interaction probability varies between them.
What property of the material has the most influence on the interaction
probability? Roughly how does the cross-section scale with this property?
(The question refers to the physical properties of the material, not the
dimensions of the plate.)

(c) We observe an event in which an incoming 18.0 keV photon produces a single
electron of energy 9.0 keV and no other outgoing particles. What can we
deduce from this? (The value of 9.0 keV represents the initial energy of
the electron, ignoring any subsequent energy loss in the material.)

(d) For a particular material, we measure how the cross-section varies as a
function of photon energy. We notice that the variation is not smooth
but has a number of ridges/peaks in the plot of cross-section vs energy.
Suggest a physical origin for these ridges.

2

From 2021:


