Neutral nuclei

○ Do neutral nuclei exist?

○ Candidates

- Odd-even staggering \rightarrow even N
- Natural candidate $\rightarrow N=4$ (tetraneutron)
© Biggest issues
- Production of very neutron-rich systems
- Detection of a neutral object

Tetraneutron: experiments

© DEMON experiment @ GANIL, Caen

$$
\begin{aligned}
& { }^{14} \mathrm{Be} \xrightarrow{(\mathrm{C})}{ }^{10} \mathrm{Be}+{ }^{4} \mathrm{n} \quad\left(, 01,{ }^{\prime} 02\right) \\
& { }^{8} \mathrm{He} \xrightarrow{(\mathrm{C})}{ }^{4} \mathrm{He}+{ }^{4} \mathrm{n} \\
& { }^{12 / 14} \mathrm{Be} \xrightarrow{(\mathrm{C})} \alpha \alpha+{ }^{4 / 6} \mathrm{n} \\
& { }^{15} \mathrm{~B} \xrightarrow{(\mathrm{C})}{ }^{14} \mathrm{Be}^{*} \rightarrow{ }^{4} \mathrm{n} \quad\left(, 05,{ }^{\prime} 06\right)
\end{aligned}
$$

© SHARAQ experiment @ RIKEN, Tokyo

$\rightarrow \mathrm{E}\left({ }^{4} \mathrm{n}\right)=0.8 \pm 1.3 \mathrm{MeV}$!
$\rightarrow \Gamma\left({ }^{4} n\right)<2.6 \mathrm{MeV}$
[Kisamori et al. 2016]

Tetraneutron: theory

$\odot \mathrm{Ab}$ initio calculations: contradictory results

Bound 4 n incompatible with other light nuclei

Realistic 3N forces leads to very broad resonance

[Shirokov et al. 2016]

Tetraneutron: latest developments

© New RIKEN experiment claims finding of a narrow 4 N resonance

[Duer et al. 2022]

○ New calculations explain it in terms of final-state (dineutron-dineutron) correlations

Literature

© Experiment

- F. M. Marques et al., Phys. Rev. C 65044006 (2002)
- K. Kisamori et al., Phys. Rev. Lett. 116052501 (2016)
- M. Duer et al., Nature 606678 (2022)

○ Theory

- S. Pieper, Phys. Rev. Lett. 90252501 (2003)
o E. Hiyama et al., Phys. Rev. C 93044004 (2016)
○ A. M. Shirokov et al., Phys. Rev. Lett. 117182502 (2017)
o S. Gandolfi et al., Phys. Rev. Lett. 118232501 (2017)
○ A. Deltuva and R. Lazauskas, Phys. Rev. Lett. 123069201 (2019)
○ R. Lazauskas, Phys. Rev. Lett. 130102501 (2023)

