
Nuclei from lattice QCD

⦿ Strong + EW forces  →  Nuclear interactions

○ Solving quantum chromodynamics (QCD) should give direct access to properties of nuclei

○ Unfortunately, QCD too complex to be solved at low energies (non-perturbative)

⦿ Only known solution: solve QCD on a lattice

○ Discretise space-time in a finite volume & evaluate path integrals over the fields numerically

○ Artefacts due to lattice spacing & finite volume should be systematically removed

quark fields
gluon fields



Nuclei from lattice QCD

⦿ First option: compute directly nuclear observables
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Fig. 20. Left: Central part of the nucleon-nucleon potential in the 1S0 channel computed within lattice QCD for three different
quark masses. Taken from ref. [70]. Right: Lattice QCD calculations of bound-state energy levels in the 4He sector. Adapted
from ref. [71].

The situation is more delicate for the EFT expansion. In principle, one of the advantages of using an effective
theory is indeed the capacity to associate an error to each level of truncation of the theory. In practice, the way
chiral EFT is currently implemented poses questions about its feasibility. A fundamental issue concerns the viability
of Weinberg power counting, at the basis of modern chiral EFT interactions, with its correctness being debated
(see, e.g., [63]). Alternative power counting formulations have been proposed but not yet exploited to construct full
Hamiltonians. Moreover, a practical issue relates to the difficulty of deriving higher orders in the chiral EFT expansion
and translating them into matrix elements usable by many-body practitioners, which hinders order-by-order many-
body calculations. Nevertheless, progress is being made towards the long-term goal of thoroughly assessing associated
errors and propagating them into the calculation of many-body observables.

7.2 Extending ab initio calculations to heavy nuclei

Provided that a suitable interaction model is at hand, current ab initio implementations are limited in their applicability
to around mass A ∼ 100. The reasons are mainly computational, but formal challenges are present as well. For what
concerns shell model-type calculations, a diagonalisation of the valence-space Hamiltonian is involved. As A increases,
the dimension of the needed valence space increases. Around or slightly above A ∼ 100 the number of matrix elements
associated to those valence spaces hits the limits of aggregate memory available in modern high-performance computing
clusters (see fig. 6(right)). Possible solutions involve the use of importance-truncation techniques to pre-select a subset
of matrix elements that enter the diagonalisation [64] or the use of Monte Carlo methods [65].

Expansion methods face a different computational problem as they require the use, i.e. the computation and
storage, of large tensors. This pertains both to the interaction matrix elements, in particular of three-body operators,
and to the (particle-hole) amplitudes that enter the many-body expansion. As the mass and consequently the basis
increases, these tensors become intractable. A possible solution involves the implementation of tensor-decomposition
techniques developed in applied mathematics, already in use in quantum chemistry [66]. In addition, these many-body
approaches require generalisations to address doubly open-shell systems, where collective correlations —difficult to
capture when the expansion builds on a spherical reference state— become significant. First steps in this direction are
being done [67].

In general, the extension of ab initio calculations to heavy nuclei will necessarily involve significant technical and
computational developments. Even if such calculations might be able to cover, one day, the whole nuclear chart, at
present it is not clear whether this will be the preferable strategy for a predictive, universal first-principle approach or
instead other EFTs, e.g., based on different (more collective) degrees of freedom, will turn out to be more efficient [68].

7.3 Lattice QCD

One could argue that working with nucleons and pions as degrees of freedom is not really “ab initio”, since we know
that they are composite particles governed by the underlying theory of quantum chromodynamics. Then, can we
compute properties of atomic nuclei starting from QCD?

At low energy, QCD is non-perturbative and calculations are possible only via lattice simulations. A possibility
consists in constructing the bare nucleon-nucleon (and higher-body) interaction directly from lattice QCD calculations.
This route is being pursued but, although a two-body potential has been successfully computed [23] (see fig. 20(left))
and even applied to compute properties of light nuclei [69], considerable difficulties remain in the three-nucleon sector.

[Beane et al. 2013]

✗ Noise-to-signal ratio of A-nucleon correlation    
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where all interaction energies have been neglected, and N is the number of (independent) calculations.
At large times, the noise-to-signal ratio has the form, as argued by Lepage [138],
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More generally, for a system of A nucleons, the noise-to-signal ratio behaves as
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at large times.
The various “Z-factors”, such as Z3⇡, depend upon the details of the sources and sinks interpolators

that are used. For the calculations performed by the NPLQCD collaboration, the projection onto zero-
momentum final state nucleons, introduces a 1/

p
Volume suppression of the amplitudes of the various

components (except for NN) in addition to color and spin rearrangement suppressions that exists
independent of the spatial structure of the source. As a consequence, an interval of time slices exists at
short times (the “Golden Window”) in which the variance of the correlation function is dominated by
the terms in Eq. (71) that behave as ⇠ e

�2MN t. In this window, the signal-to-noise ratio of the single
baryon correlation function is independent of time. Further, the signal-to-noise ratio does not degrade
exponentially faster in multi-baryon correlation functions than in single-baryon correlation functions in
the “Golden Window”.

The finite temporal extent introduces backward propagating states (thermal states) into the corre-
lation functions which lead to exponentially worse signal-to-noise ratios at large times [115, 116, 117].
These contributions are suppressed by at least exp(m⇡T ), however, they can cause complications. We
note that the impact of these states can be mitigated by working at larger temporal extents and expo-
nentially large computational resources are not required.

With the high statistics calculations that have been performed, the behavior of the signal-to-noise
ratio has been carefully examined, and it was found to be useful to form the e↵ective noise-to-signal
plot [115]. On each time slice, the quantity

S(t) =
�(t)

x(t)
, (73)

is formed, from which the energy governing the exponential behavior (the signal-to-noise energy-scale)
can be extracted via
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For a correlation function that is dominated by a single state with a corresponding variance correlation
function dominated by a single energy scale, the quantity ES(t; tJ) will be independent of both t and
tJ .

The signal-to-noise ratio in the one- and two-nucleon sector has the simplest structure as only up
and down quarks appear in the interpolating operators. In the single nucleon sector, it is expected that
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✓ Could provide highly useful benchmarks

 Robert Roth - TU Darmstadt - March 2021 

Hatsuda, Aoki, Ishii, Beane, Savage, Bedaque,... 

Tomorrow... from Lattice QCD

! first attempts towards construction of 
nuclear interactions directly from 
lattice QCD simulations 

! compute relative two-nucleon wave 
function on the lattice 

! invert Schrödinger equation to 
extract effective two-nucleon potential 

! only schematic results so far 
(unphysical masses and mass 
dependence, model dependence,…) 

! alternatives: phase-shifts or low-
energy constants from lattice QCD
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Nuclear Interaction from Lattice QCD
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■ first steps towards construction
of a nuclear interaction through
lattice QCD simulations

■ compute relative two-nucleon
wavefunction on the lattice

■ invert Schrödinger equation to
obtain local ‘effective’ two-
nucleon potential

■ schematic results so far (un-
physical quark masses, S-wave
interactions only,...)
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[Ishii et al. 2007]

⦿ Second option: compute NN (& NNN) potential 

✗ Unphysical pion masses

✗ Difficult to extend to 3-body forces

✓ Extremely useful if extended to hyperons

✗ Unphysical pion masses


