
Handling matrix elements of 3N interactions

⦿ Matrix elements of (2N & 3N) nuclear interactions must be stored & read by computer codes
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Dimensionality of many-body operators

 7

• In large-scale applications 3B matrix element files can be 100 Gb in size 

• Benchmark from full diagonalization in light systems: 4B effects are small ( ≈100 keV in He4 ) 

We do not know the size of 4B forces in medium-mass systems!
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FIG. 1: (color online) Memory required to store the T -
coefficients (!), as well as the three-body matrix elements in the
antisymmetrized-Jacobi (!), JT -coupled ("), and m-scheme (#)
representation as function of the maximum three-body energy quan-
tum number E3max. All quantities are assumed to be single-precision
floating point numbers.
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with all M and MT quantum numbers determined by sums of
the single-particle m and mt quantum numbers, e.g., Mab =

ma +mb. This decoupling is trivial and requires only Clebsch-
Gordan coefficients. Therefore, the decoupling can be easily
and efficiently done on the fly during the many-body calcula-
tion.

F. Computational strategy

After discussing the formal steps for the calculation of the
three-body matrix elements entering NCSM-type many-body
calculations, we would like to address a few computational
aspects, since they are crucial for practical applications and
set the limits for present ab initio calculations.

The calculation of three-body matrix elements is a prime
example for the ’recompute versus store’ paradigm. In many
NCSM applications including chiral 3N interactions [8, 30,
42], the complete set of m-scheme matrix elements (16) was
computed and stored before the actual many-body calcula-
tion. As mentioned earlier, the sheer number of three-body m-
scheme matrix elements sets a severe limit to the model-space
sizes that are accessible with this approach. This is illustrated
in Fig. 1 which shows the memory needed to store m-scheme
matrix elements of the 3N interaction exploiting all basic sym-
metries as function of the maximum total energy quantum

number E3 max of the three-body states. For a NCSM calcu-
lation of a mid p-shell nucleus in Nmax = 8, corresponding to
E3 max = 11, about 33 GB are needed to store the necessary
3N matrix elements in single precision exploiting all symme-
tries [29]. Moreover, disk-I/O and memory access is nontriv-
ial for these huge sets. In order to extend the NCSM model
space to Nmax = 12 or even 14 for mid p-shell nuclei, we
have made a first step towards a ’recompute instead of store’
strategy in Ref. [33]. Instead of precomputing m-scheme ma-
trix elements, we only precompute and store the JT -coupled
matrix elements defined by Eq. (14). All the computationally
demanding steps of the transformation are still done in the
precompute phase. However, as illustrated in Fig. 1, the stor-
age needed for the JT -coupled matrix elements is reduced by
up to three orders of magnitude. For an Nmax = 8 p-shell cal-
culation only 0.4 GB of storage is needed for the three-body
matrix elements in single precision.

The price to pay for this gain is the on-the-fly decou-
pling (16) of the three-body matrix elements during the many-
body calculation. We have optimized the storage scheme for
the JT -coupled matrix elements to facilitate a fast and cache-
optimized on-the-fly decoupling: we store the values of the
matrix elements in a one-dimensional vector. The order and
position of the matrix elements is defined via a fixed loop-
order for all quantum numbers of the JT -coupled matrix ele-
ments. The six outer loops are defined by the quantum num-
bers ã, b̃, c̃, ã′, b̃′, c̃′ of the single-particle orbitals, where we
exploit antisymmetry and hermeticity. The six inner loops are
defined by the coupled quantum numbers Jab, J′

ab
, J and Tab,

T ′ab, T in this specific order. The three innermost isospin loops
run over all 5 possible combinations of the isospin quantum
numbers and can be unrolled manually. We do not exploit
antisymmetry constraints for matrix elements with identical
single-particle orbitals to keep a fixed stride for this inner seg-
ment. The angular-momentum loops use the triangular con-
straints defined through the single-particle quantum numbers.
To evaluate a specific m-scheme matrix element we jump to
the position in the vector defined by the orbital quantum num-
bers and then evaluate the decoupling loops as a linear sweep
over a contiguous segment of the storage vector. Thus, the de-
coupling operation is very simple and highly cache efficient.
This simplicity and its moderate memory footprint makes the
decoupling routine an excellent candidate for porting to ac-
celerator cards and first developments along these lines have
been successful already [53]. The standard implementation of
the JT -coupled scheme has already been adopted in various
many-body methods [18, 21, 22, 29, 34–36].

One could consider to push the boundary further towards
recompute in order to save even more memory. Presently we
compute and store the JT -coupled matrix elements via the
transformation (14) before the many-body calculation. The
T coefficients as well as the HOBs, 6 j and 9 j symbols that
enter Eq. (10) are cached for performance reasons. Both, the
storage of the resulting JT -coupled matrix elements and the
caching of the T coefficients requires similar and substantial
amounts of memory, as illustrated in Fig. 1. Therefore, an
on-the-fly evaluation of the transformation (14) using precom-
puted T coefficients will not reduce the storage needs as com-
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• Storage of full three-body basis is computationally out of reach (even in coupled form)  

• Additional 3B truncation penalizes configurations with highly excited single-particle states

Truncation in 3B space

ek1 + ek2 + ek3  E3max
<latexit sha1_base64="nCjIOMrmojQklwyvcPeZ5gi7bE8="></latexit>

[Roth et al. 2014] Exploiting symmetries

⦿ How to reduce the size of 3N matrix elements, hence the storage and computational costs?

➝ 3N matrix elements seen as multi-dimensional arrays (or high-order tensors)

➝ Techniques from applied mathematics can be explored (objective: compress the information)

⦿ Two-body forces can be factorised as
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I. INTRODUCTION

The concept of quasiparticle plays a key role in the
description and understanding of many-body systems. It
is at the core of Landau’s theory of Fermi liquids [1] [...]

In nuclear physics, the success of the shell model can be
interpreted in terms of weakly interacting quasiparticles.
[...]

Green’s functions provide the proper theoretical
framework for defining quasiparticles [2].

Mean free path, general relevance and recent exper-
iments.

Description of the content of the paper.

II. THEORETICAL SCHEME

A. Quasiparticles in infinite systems

In a finite N -body system the poles of the single-
particle Green’s function (GF) along the energy axis
represent the (ground-state and excited) energies of the
(N ±1) systems relative to the N -body ground state and
are usually denoted as one-particle separation or excita-
tion energies. When N increases this energy spectrum
becomes more and more degenerate and a description in
terms of isolated excitations less meaningful. In the ther-
modynamic limit the energy gap between two adjacent
excitation tends to zero, which can be mathematically
translated into the poles of the GF being transformed
into branch cuts. In this limit the spectral function be-
comes a continuous function of the energy that is typical
characterised by a smooth background and prominent
peaks. One can then identify such peaks with quasi-
particles, whose energy now represents some (coherent)
excitation of the system. The broadness of the peak can
instead be associated with the degree of de-coherence,
or lifetime, of such excitation, formally accounted for by
assigning an imaginary part to the quasiparticle energy.

The resulting complex poles are in fact not an approx-
imated tool introduced to describe the broad features of
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the spectrum. It is easy to see that in the thermodynamic
limit the single-particle propagator becomes ill-defined if
the energy is real-valued, while the introduction of a (in-
finitesimally small) imaginary energy component removes
the issue. One therefore always works, formally, with
propagators G(k,!± i⌘) where k denotes the momentum
modulus1, ! 2 R the energy and ⌘ ! 0+. Particularly
relevant are the so called advanced and retarded propa-
gators, which read in their Lehmann representation

GR/A(k,!) =

Z
d!0

2⇡

A(k,!0)

! � !0 ± i⌘
, (1)

where A(k,!) is the positive-definite spectral function.
One could think that by simply substituting ! with a
complex energy z = ER + iEI and by searching for the
poles of G(k, z), i.e. starting from the complex Dyson
equation

G�1(k, z) = z � k
2

2m
� ⌃(k, z) , (2)

and solving
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(3)
one would access real and imaginary part of quasiparti-
cle energies and consequently detailed information about
excitations of the system. However, one can show that G
fulfils the the reflection property

G(k, z)⇤ = G(k, z⇤) , (4)

1
We consider here a homogeneous system governed by a time-

independent Hamiltonian. In this case one-body quantities like

the single-particle propagator depend only on the (relative) po-

sition modulus and time di↵erence, or their Fourier counterparts

momentum modulus and energy (see Sec. III A).

(➝ Singular Value Decomposition)

➝ Generalisation to 3N under investigation

➝ Idea: factorise & keep only the most important factors (i.e., truncate the sum)
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