Handling matrix elements of 3 N interactions

\odot Matrix elements of ($2 \mathrm{~N} \& 3 \mathrm{~N}$) nuclear interactions must be stored \& read by computer codes

๑ How to reduce the size of 3 N matrix elements, hence the storage and computational costs?
$\rightarrow 3 \mathrm{~N}$ matrix elements seen as multi-dimensional arrays (or high-order tensors)
\rightarrow Techniques from applied mathematics can be explored (objective: compress the information)
\bigcirc Two-body forces can be factorised as $v_{i j k l}=\sum_{a} \lambda_{a} g_{i k}^{a} g_{j l}^{a} \quad(\rightarrow$ Singular Value Decomposition)
\rightarrow Idea: factorise \& keep only the most important factors (i.e., truncate the sum)
\rightarrow Generalisation to 3 N under investigation

