# The case of <sup>34</sup>Si

 $\odot$  Unconventional depletion ("bubble") in the centre of  $\rho_{ch}$  conjectured for certain nuclei

## • Purely quantum mechanical effect

- $\circ$  ℓ = 0 orbitals display radial distribution peaked at *r* = 0
- $\circ$  ℓ ≠ 0 orbitals are instead suppressed at small *r*
- Vacancy of *s* states ( $\ell = 0$ ) embedded in larger- $\ell$  orbitals might cause central depletion

#### Conjectured associated effect on spin-orbit splitting

- Non-zero derivative at the interior
- Spin-orbit potential of "non-natural" sign

P<sub>ch</sub>

 $\circ$  Reduction of (energy) splitting of low- $\ell$  spin-orbit partners

• Bubbles predicted for hyper-heavy nuclei [Dechargé et al. 2003]

### ● In light/medium-mass nuclei the most promising candidate is <sup>34</sup>Si



[Todd-Rutel et al. 2004, Khan et al. 2008, ...]



#### • Ab initio calculations predict the presence of a charge bubble

• Good reproduction of g.s. properties

| E  [MeV]         | ADC(1)  | ADC(2)   | ADC(3)   | Experiment |
|------------------|---------|----------|----------|------------|
| <sup>34</sup> Si | -84.481 | -274.626 | -282.938 | -283.427   |
| $^{36}S$         | -90.007 | -296.060 | -305.767 | -308.714   |

| $\langle r_{\rm ch}^2 \rangle^{1/2}$ | ADC(1) | ADC(2) | ADC(3) | Experiment          |
|--------------------------------------|--------|--------|--------|---------------------|
| <sup>34</sup> Si                     | 3.270  | 3.189  | 3.187  | -                   |
| $^{36}S$                             | 3.395  | 3.291  | 3.285  | $3.2985 \pm 0.0024$ |

### $\circ$ Mild central depletion predicted



