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0. General introduction

General Introduction

Nuclear astrophysics is a field which addresses some 
of the most compelling questions in nature

● How do stars form and evolve? What is their fate?

● What is the origin of the chemical elements in the Universe?

● What is the energy source powering stars?

● Which nucleosynthesis processes are responsible of the 
observed solar abundances?
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An interdisciplinary field

Observations
(astronomy and meteorites)

Astrophysic modeling
(Big-Bang, stars, ...)

Nuclear physics
(properties of nuclei)

General Introduction
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The solar abundance curve

General Introduction

The Rosetta stone in nuclear astrophysics
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The binding energy per nucleon

General Introduction

● The light elements Li, Be, B are relatively fragile
● The “-nuclei” (A is multiple of 4) are particularly stable
● E/A is maximum (8.8 MeV) near 56Fe → “iron peak”

fission

fu
si

on
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The nuclear shell-model

General Introduction

● Nuclear stability is related to 
shell closure and pairing

● Z, N odd or even
→ oscillation in the abundance 
curve

● Nuclei with Z or N equal to a 
magic number
→ abundances peak

● Double magicity Z = 82 and    
N = 126
→ 208Pb peak
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1. Stellar astronomy

Stellar astronomy

Buldge of the Milky Way – Hubble Space Telescope – Wide Field Camera 3
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Black body radiation
● Idealized physical body that absorbs all incident electromagnetic 

radiation and which is at thermodynamic equilibrium

→ hot furnace with a small hole 
which does not disturb thermal 
equilibrium inside

● Surface brightness (erg cm-2 s-1 sr-1 Hz-1 or erg cm-2 s-1 sr-1 cm-1) given 
by Plank’s law

Stellar astronomy

h is the Planck constant, c the 
speed of light, k the Boltzmann 
constant and T the black body 
temperature

 Hot oven

radiation
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Credit: Astrophysique sur Mesure

The colour of stars
● The spectrum of a star is very similar to that of a black body

● Wien’s law: 

● Stefan-Boltzmann law:

● 
s
 = 5.67 10-5 erg cm-2 s-1 K-4 is the Stefan-Boltzmann constant

● T
eff

 is the effective temperature of a star with radius R and luminosity L 
(≡ temperature of black body having same radiated power per unit 
area)

Stellar astronomy

● In practice, T
eff

 is generally 
estimated from the colour index 
B-V  which is the brightness 
ratio 

B
~4350 Å and 

V
~5550 Å

● Johnson photometric system 
UBV = Ultraviolet Blue Visible
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Are stars good black bodies?

Stellar astronomy

Deviations from black body emission
● Absorption and emission lines
● Contribution of several thermal components (photosphere, corona...)
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Stellar spectra

Stellar astronomy

Absorption spectra from stars

Solar spectrum

● Each element absorbs light at 
characteristics frequencies

● Information on:

● Chemical composition

● Surface temperature

● Ionization degree

● Gas pressure and density

● ….

HH He, NaCa+ O
2

O
2Fe
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Spectral classification
The Harvard classification of stars (“Oh, Be A Fine Girl/Guy, Kiss Me”)

Stellar astronomy

Class T
eff

Colour Absorption lines

O > 25000 K blue Helium, nitrogen, carbon & oxygen

B 10000 – 25000 K blue – white Neutral helium, moderate hydrogen

A 7500 – 10000 K white Strong hydrogen

F 6000 – 7500 K yellow – white Metals: Fe, Ti, Ca, Sr, Mg

G 5000 – 6000 K yellow (sun) Calcium, helium, hydrogen, metals

K 3500 – 5000 K yellow – orange Metals

M < 3500 K red Metals and titanium oxide
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The apparent magnitude

Stellar astronomy

● The magnitude of a celestial body is a measure of its brightness (F) 
according to a logarithmic scale (adapted from human visual perception)

● Apparent magnitude: 

● Inverted scale: apparent magnitude of +1 means 2.5 times less 
luminous than Vega

● Vega (A0, 2nd brighest star in the 
northern hemisphere) was 
chosen as the zero point

● Now m
x
(Vega) = +0.03 !

Example of filters
X = U, B, V, ...
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The absolute magnitude

Stellar astronomy

● The interesting physical quantity is the luminosity:

   where D is the distance to the object

● To compare the luminosity of different objects they are placed at a 
common distance of 10 pc (1 pc = 3.26 ly)

● The absolute magnitude M of an object is its apparent magnitude if it 
were at a distance of 10 pc

where D
pc

 is the distance in pc and m – M is the distance modulus
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Some typical magnitudes

Stellar astronomy

Object m M

Sun -26.8 +4.8

Full moon -12 invisible

Venus -4 invisible

Betelgeuse (supergiant 
star) +0.5 -5.6

The faintest star visible 
with naked eye

+6

Andromeda galaxy +3.4 -20.7

Quasar in the distant 
Universe +28 -30
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Distance measurement – parallax

Stellar astronomy

● The method of annual parallax (p) is the only one to give a direct 
measurement of stellar distance

● 1 parsec: distance from which R is 1” (= 3.26 ly)

● Photographic plates: p ~ 0.01”
   HIPPARCOS ESA satellite (1989): p ~ 0.001”
   GAIA ESA satellite (2013): p ~ 10-6 ” 

→ D ~ Mpc (!) [Milky Way ~ 25 kpc] 

(  in radian), and R is the mean Earth-Sun distance (= 1 AU)

(p in arcseconds ≡ 1/3600 degree)
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The Hertzprung-Russell (HR) diagram
● Diagram found in 1911–1913 

named after the two astronomers 
Hertzprung and Russell

● Luminosity classes
I. Supergiants
II. & III. Giants
IV. Subgiants
V. Main sequence (MS)
VI. White dwarfs (WD)

●

for a same temperature, the lower 
the luminosity, the smaller the star 
radius

● GAIA, 2nd data release
> 4 million stars within 5 kly from 
Sun

Stellar astronomy

HR diagram is a key tool to understand star population and evolution
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Star clusters
Open cluster Globular cluster

● M45 – The Pleiades

~ 500 stars (some are hot)

age: 4107 years (young)

distance: 120 pc (close)

● M13 – Hercules

~ 300 000 stars (!)

age: 11.6109 years (old)

distance: 6.8 kpc (far)

Stellar astronomy
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The HR diagram of star clusters
Open cluster Globular cluster

M45 M13

● Most of the stars are in the main sequence for the Pleiades
● Much more complex HR diagram in case of M13

Stellar astronomy

HR diagram is a key tool to understand star population and evolution
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Theoretical HR diagrams

Stellar astronomy

● The cluster age can be found from 
the position of the turn-off phase
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The mass-luminosity relation...

Stellar astronomy

● ….of stars in the main sequence 
(not good for, e.g., white dwarfs 
and giants)

● Based on observations of 
relatively nearby eclipsing 
binaries (binary star systems 
where the orbit plane is along 
our line of sight)

 L   M with  ~ 3 – 4
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The mass and fate of stars

Stellar astronomy

The initial mass of stars fixes their lifetime and ultimate fate (white 
dwarfs, neutron stars, black holes)
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2. The cycle of matter and chemical 
evolution of the galaxy

Chemical evolution

Eta Carinae – Hubble Space Telescope – WFPC-2

Eta Carinae ( Car A)
● 100 – 150 M⊙
● 2.6 kpc
● Variable blue 

hypergiant
● Huge explosion 

150 years ago 
(still here)



M2 NPAC 2023-2024 (Lecture 1) 26/63

The “death” of stars

● The ring nebula (M57) in 
the Lyra constellation is a 
“planetary” nebula
(look for the white dwarf)

● The crab nebula (M1) in the 
Taurus constellation is a 
supernova remnant
(look for the neutron star)

Chemical evolution
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The radioactivity of the Galaxy

Map of the Milky Way at 1.8 MeV

Cygnus centre of 
the Galaxy

● Gamma-ray astronomy (MeV range) allows to observe 
in real time the Galactic enrichment in radioactive 
nuclei

26Al (t1/2 =7.4 105 years)

26Mg

 +

E= 1.8 MeV

excited state

Chemical evolution
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The cycle of matter in the Galaxy

Chemical evolution

Time

A
bo

nd
an

ce Z>2Big-Bang 
H, He, Li

Star formation from 
condensation of gas

 Interstellar 
gas

Li, Be, B

StarsCosmic rays

white dwarves 
neutron stars 
black-holes

Matter enriched in 
“heavy” elements 

Supernovae, 
stellar winds
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Stellar abundances

Chemical evolution

[Fe/H] = -0.53

[Fe/H] = -0.16

[Fe/H] = +0.29

tim
e

● HD 787 and GC44 are stars of population I
●  Boo (= Arcturus) is probably a star of population II (more metal poor)
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The metallicity
● Metal (astronomy): every chemical element heavier than helium (Z>2)

● Metallicity:
● Using mass fractions: 

where X, Y and Z are mass fractions of H, He and metals, respectively
→ Sun (surface): Z = 0.0134, X = 0.7381, Y = 0.2485

● Using chemical abundance ratios: 

n
H
 and n

Fe
 are numbers of H and Fe per unit of volume (density)

● The Fe abundance (n
Fe 

/ n
H
) is one of the most simple to measure in 

stellar spectra

● Examples
● [Fe/H]⊙ = 0 (metallicity of the proto-solar cloud 4.6109 years ago)
● Stars of population II (“metal”-poor): [Fe/H] < -1 (1/10 of the solar 

metallicity
Chemical evolution
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Models of Galactic Chemical Evolution

Key ingredients:

● Star Formation Rate (SFR) in the Galaxy (M⊙ per year)

● Initial Mass Function (IMF) of the stars at the time of their formation

● Lifetime of the stars as a function of mass and metallicity

● Production yields of the isotopes in each star (nucleosynthesis)

● Stellar matter ejection rate (stellar winds, supernovae)

● Mixing with the interstellar gas (instantaneous or delayed)

● Interaction of the Galaxy with the intergalactic medium (gas infall, 
ejection by galactic wind, ...)

→ each of these ingredients is a research topic by itself

~ 2 kpcGoals:
● Compute time and spatial evolution 

of isotope abundance
Model:

● Independent radial annulus (R⊙ = 
8.5 kpc)

Chemical evolution



M2 NPAC 2023-2024 (Lecture 1) 32/63

Galactic history 
in the solar neighbourhood

Chemical evolution

G-type
stars

P
rantzos (2008)

● Solar neighbourhood: region of volume < 0.5 kpc3 around the sun
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A model for the solar abundances
P

rantzos (2008)

● The X
i
 (mass fraction) from 12C to 68Zn are reproduced within a factor of two (!)

● 15N is most probably synthesized in classical novae
Chemical evolution
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3. The solar or “cosmic” abundances

Solar abundances

The solar photosphere (NASA) Fragment of the Orgueil meteorite (France 
1864), MNHN collection
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How to determine solar abundances?

Solar abundances

● Earth material (crust)
Problem: chemical fractionation strongly 
modifies the local composition compared to 
pre-solar nebula

Example: quartz is dominantly SiO
2
, which is 

not the composition of the solar system, e.g. 
N(O) = 16 x N(Si) 

→ Main source for isotopic composition of elements since chemistry is governed by 
the number of electrons/protons (not the neutrons)

● Meteorites
Some categories of meteorite formed from material that never experienced high 
pressure or temperatures, and therefore were never fractionated
→ direct sampling of the pre-solar nebula

● Photosphere
Sun is formed directly from pre-solar nebula material and its outer layers (largely 
unmodified) create spectral features
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Gifts from Heaven

Solar abundances

Up to ~ 200 meteorites / km2, mean age 710 kyr, max age 2.5 Myr ! (36Cl)

M
et

eo
rit

e 
fin

d 
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 A
ta
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m

a 
de
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rt
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Classification of meteorites

Solar abundances

● Many different types of meteorites
● Classification relies on chemical composition, mineral properties, ….

Group Subgroup Composition Frequency Origin

Stony

Chondrites

Fe & Mg silicates

86 % Primitive asteroids & 
comets

Achondrites 8.4 % surface

Mixed 
(stony-iron)

Metallic Fe 
+ Fe/Mg silicates

1.1 % Mantle/core

Iron Metallic Fe 4.5 % core

D
iff

er
en

tia
te

d 
bo

di
es

● Not all meteorites provide representative solar abundances (most of 
them are differentiated or have undergone gas-solid fractionation)

● Chondrites are primitive meteorites that underwent little modification 
after their formation
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Chondrites

Solar abundances

● Chondrites have chondrules which are 
small 0.1 – 1 mm size spherical 
inclusions in matrix

● Chondrites have formed very early in 
the presolar nebula and remained 
largely unchanged since then

● Different types: ordinary (79.9 %), 
enstatite (1.6 %) and carbonaceous 
(4.3 %)

chondrule

Grassland chondrite

Pieced of Orgueil meteorite

● Carbonaceous chondrites  have different 
properties (very little heating)

● CI are considered to be the least altered 
meteorites 
→ named after Ivuna meteorite (Tanzania, 
1938, 705 g)

● Only 5 known meteorites contain CIs 
chondrites (Alais, Ivuna, Orgueil, 
Revelstoke, Tonk)
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Solar spectrum

Solar abundances

N. A. Sharp, NOAO/NSO/Kitt Peak FTS/AURA/NSF

40
0 

– 
70

0 
nm

Absorption spectra provide the majority of data because the largest number 
of elements can be observed, and because they are well understood (good 
models available)
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From spectral lines to abundances

Solar abundances

● Each absorption line originates from a specific atomic transition in a specific 
atom/ion
● Wavelength → atomic species
● Intensity → abundance

● The equivalent width (W) describes the 
width a rectangular spectral line must 
have in order to have the same total 
absorption line as the actual line

● Simple absorption in an atmosphere layer of thickness x

 → if  is known, one can determine the abundances

● Determination of cross-section is not easy! Oscillator strength (em 
transition probability between atomic levels), line width (lifetime) depends 
on natural width, frequency of collisions (P), Doppler broadening (T) ….

I
0

I

W

where I is the flux, I
0
 the continuum flux,  the absorption cross-

section, and n the number density of absorbing atoms



M2 NPAC 2023-2024 (Lecture 1) 41/63

Spectrum synthesis

Solar abundances

A good stellar atmosphere model is needed
● Effective temperature
● Surface gravity
● “metallicity”

Assumptions
● Plane-parallel geometry
● Homogeneity
● Stationarity
● Hydrostatic equilibrium
● Radiative equilibrium
● Local Thermodynamic Equilibrium (LTE)
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Photospheric vs meteoritic abundances

Solar abundances

● Chondrites CI and solar photosphere have extremely similar composition 
over at least 9 orders of magnitude

● Chondrites CI condensed from a gas having the same chemical 
composition as the Sun
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The solar abundance curve

Abundances in mass fractions

Solar abundances
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4. Birth of stars

Birth of stars

The "Pillars of Creation" within the Eagle nebula 
(M16), Hubble (2014)
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MHD simulations of star formation

Birth of stars

Density distribution of interstellar gas 
Audit & Hennebelle (2010)

● Basic principle: gravitational contraction of a molecular (H
2
) gas nebula 

which becomes unstable

● But it depends on the turbulence 
generated by the winds from 
massive stars and the shock 
waves from supernovae, the 
interstellar magnetic field, the 
cosmic rays, …
→ Magneto Hydro Dynamic 
(MHD) simulations

● Gravitational collapse can be 
spontaneous or triggered by 
external influence



M2 NPAC 2023-2024 (Lecture 1) 46/63

The role of massive stars

Birth of stars

Triggered star formation on the 
border of the Orion-Eradinus 

superbubble
(Lee & Chen 2009)

● Massive stars (winds, supernovae) trigger the birth of new generation of stars

● Gray scale → H → ionized hot gas
● Contours → 12CO line → cold gas 
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The virial theorem

Birth of stars

● Fundamental theorem describing the properties of auto-gravitating systems 
at hydrostatic equilibrium (e.g. stars)

● Gravitational potential energy  of a spherical cloud of mass M and radius 
R:

where  ~ 1 is a factor which depends on the mass density distribution (r)
→  = 3/5 for a homogeneous sphere

● Kinetic energy of a perfect gas of temperature T
where           is the mean mass per particle
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The Jeans mass

Birth of stars

● The Jeans mass is the minimum mass a cloud must have if gravity is to 
overwhelm pressure and initiate collapse

● Equating 2K and -, one can write                                ,

and introducing the mean density number n, such as                                    ,

we get the critical Jeans mass:

● Stability criterion: an isolated, spherical and isothermal cloud is unstable if 
its mass is greater than M

J

● In the molecular gas of the interstellar medium, the mean molecular weight 
is  ≈ 2.4 , and we get:



M2 NPAC 2023-2024 (Lecture 1) 49/63

Stars are born in clusters

Birth of stars

M45 – The Pleiades M13 – Hercules

● During the contraction of a cloud, the central density increases but T ~ 
constant if radiative cooling is efficient
→ M

J
 (∝ n-1/2) decreases → smaller and smaller regions of the cloud 

become unstable → the cloud fragments → star cluster

● About 1010 years ago, T was typically ~104 K → globular clusters (e.g. 
M13) formed from clouds of mass M

J
 ~ 106 M⊙
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5. The internal structure of stars

Structure of stars

The sun in extreme ultraviolet (Solar Dynamics 
Observatory, March 30, 2010)

Convective zone

Radiative zoneFusion core
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Equations of stellar struture

Structure of stars

For an isolated, static, spherically symmetric star, four basic laws/equations 
are needed to describe their internal structure

● Mass conservation
● Hydrostatic equilibrium (momentum conservation)

→ at each radius, forces due to pressure differences balance gravity
● Conservation of thermal energy

→ at each radius, the change in the energy flux equals the local rate of 
energy release

● Thermal energy transport
→ relation between the energy flux and the local gradient of temperature

These basic equations are supplemented by :
● Equation of state (pressure of a gas as a function of its temperature and 

density)
● Opacities (how transparent the star is to radiation)
● Nuclear energy generation rate
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Mass conservation

Structure of stars

● Let consider a thin shell at a distance r 
from the center of the star

● Let define M
r
 as the mass contained inside 

the sphere of radius r

● Conservation of mass implies that:

where (r) is the density as a function of 
the radius

● Total mass of the star is given by

R

M

r

r+dr

M
r

dM
r

1st stellar 
structure 
equation
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Hydrostatic equilibrium

Structure of stars

● Hydrostatic equilibrium: balance 
between gravity and internal pressure

● Pressure (net force due to difference in 
pressure between upper and lower 
faces of a cylinder)

● Gravity:

 

● Momentum conservation:

dS

2nd stellar 
structure 
equation

● Mass coordinate M
r
 is 

often preferred Alternate 
form of 
hydrostatic 
equilibrium 
equation(using mass conservation)
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Energy generation in stars

Structure of stars

How much energy does the Sun need to generate in order to shine as it is?

→ Sun radiating steadily L⊙ = 4x1026 J.s-1 over ~1 Gyr (geological records) has lost 
~1.2x1043 J, corresponding to a converted mass of 1026 kg (0.01% of mass of Sun) 

Four possible sources of energy
● Cooling or contraction

→ either Sun would have been much hotter in the past, or contracting slowly 
same approach (recall Virial theorem:                  )
→ time during which the total release of gravitational potential energy would 
have supported the luminosity of the sun (thermal time scale):
 
 

● Chemical reactions
→ release ~5x10-10 of their rest mass energy << 10-4 needed!

● Nuclear reactions
→ nuclear timescale                         , where ~7 MeV/nucl is the energy 
obtained from the fusion of 4 1H into 4He, x=0.1 is the mass fraction of the sun 
used as nuclear fuel → ~ 1010 years → main sequence

→ t
th
 ~ 3x107 yr → another energy source is needed!
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Conservation of thermal energy

Structure of stars

L(r)

L(r+dr)(r)

● Luminosity L(r)
→ net power (erg.s-1) leaving the sphere 
of radius r

● Energy production rate (r)
→ nuclear energy production rate per 
mass unit (erg.s-1.g-1) at a given density, 
temperature and chemical composition 
{X

i
} → (,T,{X

i
})

● Energy release in shell:

● At thermal equilibrium:

3rd stellar 
structure 
equation

→ luminosity of the nuclear 
burning core
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Thermal energy transport (1)

Structure of stars

The energy transport processes determine the temperature gradient 
inside the star

There are 3 ways to transport energy in stars:
● Radiation (energy is carried by photons)

→ photons produced by nuclear reactions and 
atomic transitions can (i) scatter with electrons and 
ions, and (ii) be absorbed and re-emitted many 
times before reaching the surface: random walk
→                   given by the opacity coefficients 

● Convection (energy carried by bulk motions of gas)
→ convection if                     

             (Schwarzschild criterion)
1D treatment of stellar convection is uncertain

● Conduction (energy carried by particle motions)
→ only important in extremely dense medium 
(white dwarf, neutron star...)
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Thermal energy transport (2)

Structure of stars

● Radiation transport

→ the photons emitted at high temperature T in the center of the star 
are continually emitted and reabsorbed, and gradually degraded to 
longer  as they proceed outward. In case of the sun, they emerge 
from the surface as visible light.

● Convection transport

where the ratio of specific heats capacity  = 5/3 for an ideal 
monoatomic gas 

4th stellar 
structure 
equation

 is the opacity (a mass absoprtion 
coefficient) which depends on the gas 
composition

M. Schwartzschild, The Structure and Evolution of the 
Stars (Princeton; University Press, 1958)

M. Harwitt, Astrophysical concepts (New-York; Wiley, 1973)

(adiabatic, mixing length theory)
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Convection & radiative zones in
main-sequence stars

Structure of stars

M > 1.15 M⊙

0.25 M
 ⊙ < M < 1.15 M⊙

M < 0.25 M⊙

Radiative envelop
Convective core

Convective envelop
Radiative core

Fully convective

Solar granulation
→ convective cells
(cell size ~ 100 km)
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Equation of state (1)

Structure of stars

● Total pressure:

● Pressure integral:

where v is the particle velocity, p its momentum and n(p)dp is the number 
of particles per unit of volume with momenta within the interval p and 
p+dp [vpn(p)dp is a momentum flux]

● Radiative pressure → blackbody

n
rad

(p) = Planck’s function → 

● Gas pressure → Maxwell-Boltzmann distribution (perfect gas)

At sun center (T = 16 MK,  = 150 g.cm-3) → P
rad

/P
gas

 = 7x10-4 (radiation pressure negligible!)
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Equation of state (2)

Structure of stars

● Degenerate electron gas → in the core of some stars the density is so 
high that quantum effects become important

● Heisenberg uncertainty principle:
→ if  increases – that is V (  -1) decreases – until 3p > p

th
, the 

pressure becomes higher than that inferred from the temperature

● In the limit of complete degeneracy, where all states of the phase 
space are occupied by 2 electrons of opposite spin (Pauli exclusion 
principle):  

P
e-
 does not depend anymore on the temperature (explosive 

situation!)

for p < p
F
 (Fermi momentum)

with  = 5/3 (non-relativistic) or 4/3 (relativistic)
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Summary

Structure of stars

● Structure equations:

● Equation of state:

● Nuclear energy production rate:

● Opacity coefficient:

Mass conservation

Hydrostatic equilibrium

Thermal equilibrium

Energy transport
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Back to the virial theorem

Structure of stars

● Total energy of a star is                                             (virial theorem)

● Because a star shines, E decreases with time

→  decreases ( < 0) → R decreases → the star contracts

→ K increases → the mean temperature of the star increases

● Half of the gravitational energy lost by 
the star turns into heat (K = -/2), the 
other half is radiated away (E = /2)

● The increase of the central 
temperature T

c
 allows the ignition of 

successive nuclear burning phases
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