Introduction to nuclear astrophysics

Nicolas de Séréville (nicolas.de-sereville@ijclab.in2p3.fr)
Laboratoire de Physique des 2 Infinis Irène Joliot Curie
Université Paris Saclay

Les deux infinis

Outline

0 . General introduction

Lecture 1: Introduction to nuclear astrophysics

Lecture 2: Nucleosynthesis processes in the Universe

Lecture 3: Cross-sections and thermonuclear reaction rates

Lecture 4: Experimental approaches in nuclear astrophysics

0 . General introduction

Nuclear astrophysics is a field which addresses some of the most compelling questions in nature

- How do stars form and evolve? What is their fate?
- What is the origin of the chemical elements in the Universe?
-What is the energy source powering stars?
- Which nucleosynthesis processes are responsible of the observed solar abundances?

An interdisciplinary field

The solar abundance curve

The Rosetta stone in nuclear astrophysics

The binding energy per nucleon

- The light elements $\mathrm{Li}, \mathrm{Be}, \mathrm{B}$ are relatively fragile
- The " α-nuclei" (A is multiple of 4) are particularly stable
- $\Delta E / A$ is maximum (8.8 MeV) near ${ }^{56} \mathrm{Fe} \rightarrow$ "iron peak"

The nuclear shell-model

- Nuclear stability is related to shell closure and pairing
- Z, N odd or even
\rightarrow oscillation in the abundance curve
- Nuclei with Z or N equal to a magic number \rightarrow abundances peak
- Double magicity $Z=82$ and $N=126$ $\rightarrow{ }^{208} \mathrm{~Pb}$ peak

Outline

0 . General introduction

Lecture 1: Introduction to nuclear astrophysics

1. Stellar astronomy
2. The cycle of matter and chemical evolution of the Galaxy
3. The solar or "cosmic" abundances
4. Birth of stars
5. Stellar structure

Lecture 2: Nucleosynthesis processes in the Universe
Lecture 3: Cross-sections and thermonuclear reaction rates
Lecture 4: Experimental approaches in nuclear astrophysics

1. Stellar astronomy

Buldge of the Milky Way - Hubble Space Telescope - Wide Field Camera 3

Black body radiation

- Idealized physical body that absorbs all incident electromagnetic radiation and which is at thermodynamic equilibrium
\rightarrow hot furnace with a small hole which does not disturb thermal equilibrium inside

- Surface brightness ($\mathrm{erg} \mathrm{cm}^{-2} \mathrm{~s}^{-1} \mathrm{sr}^{-1} \mathrm{~Hz}^{-1}$ or $\mathrm{erg} \mathrm{cm}^{-2} \mathrm{~s}^{-1} \mathrm{sr}^{-1} \mathrm{~cm}^{-1}$) given by Plank's law

$$
B_{\lambda}=\frac{2 h c^{2}}{\lambda^{5}} \frac{1}{e^{h c / \lambda k T}-1}
$$

h is the Planck constant, c the speed of light, k the Boltzmann constant and T the black body temperature

The colour of stars

- The spectrum of a star is very similar to that of a black body
- Wien's law: $\lambda_{\max } T=0.29 \mathrm{Kcm}$
- Stefan-Boltzmann law: $L=4 \pi R^{2} \sigma_{s} T_{e f f}^{4}$
- $\sigma_{\mathrm{s}}=5.6710^{-5} \mathrm{erg} \mathrm{cm}^{-2} \mathrm{~s}^{-1} \mathrm{~K}^{-4}$ is the Stefan-Boltzmann constant
- $T_{\text {eff }}$ is the effective temperature of a star with radius R and luminosity L (\equiv temperature of black body having same radiated power per unit area)

- In practice, $T_{\text {eff }}$ is generally estimated from the colour index $\mathrm{B}-\mathrm{V}$ which is the brightness ratio $\lambda_{B} \sim 4350 \AA$ and $\lambda_{V} \sim 5550 \AA$
- Johnson photometric system UBV = Ultraviolet Blue Visible

Are stars good black bodies?

Spectrum of Solar Radiation (Earth)

Deviations from black body emission

- Absorption and emission lines
- Contribution of several thermal components (photosphere, corona...)

Stellar spectra

Absorption spectra from stars

- Each element absorbs light at characteristics frequencies
- Information on:
- Chemical composition
- Surface temperature
- Ionization degree
- Gas pressure and density

Solar spectrum

The Harvard classification of stars ("Oh, Be A Fine Girl/Guy, Kiss Me")

Class	$\mathrm{T}_{\text {eff }}$	Colour	Absorption lines
O	$>25000 \mathrm{~K}$	blue	Helium, nitrogen, carbon \& oxygen
B	$10000-25000 \mathrm{~K}$	blue - white	Neutral helium, moderate hydrogen
A	$7500-10000 \mathrm{~K}$	white	Strong hydrogen
F	$6000-7500 \mathrm{~K}$	yellow - white	Metals: $\mathrm{Fe}, \mathrm{Ti}, \mathrm{Ca}, \mathrm{Sr}, \mathrm{Mg}$
G	$5000-6000 \mathrm{~K}$	yellow (sun)	Calcium, helium, hydrogen, metals
K	$3500-5000 \mathrm{~K}$	yellow - orange	Metals
M	$<3500 \mathrm{~K}$	red	Metals and titanium oxide

The apparent magnitude

- The magnitude of a celestial body is a measure of its brightness (F) according to a logarithmic scale (adapted from human visual perception)
- Apparent magnitude: $m_{X}(o b j)-m_{X}(V e g a)=-2.5 \log _{10}\left(\frac{F_{X}(o b j)}{F_{X}(V e g a)}\right)$

$$
x=\mathrm{U}, \mathrm{~B}, \mathrm{~V}, \ldots
$$

- Vega (AO, $2^{\text {nd }}$ brighest star in the northern hemisphere) was chosen as the zero point
- Now $m_{x}(V e g a)=+0.03!$
- Inverted scale: apparent magnitude of +1 means 2.5 times less luminous than Vega

The absolute magnitude

- The interesting physical quantity is the luminosity:

$$
L_{X}=F_{X} \times 4 \pi D^{2}
$$

where D is the distance to the object

- To compare the luminosity of different objects they are placed at a common distance of 10 pc ($1 \mathrm{pc}=3.26 \mathrm{ly}$)
- The absolute magnitude M of an object is its apparent magnitude if it were at a distance of 10 pc

$$
m-M=-2.5 \log _{10}\left(\frac{L_{X}}{4 \pi D_{p c}^{2}} \times \frac{4 \pi 10^{2}}{L_{X}}\right)=5 \log _{10} D_{p c}-5
$$

where $D_{p c}$ is the distance in pc and $m-M$ is the distance modulus

Some typical magnitudes

Object	m	M
Fun	-26.8	+4.8
Venus	-12	invisible
Betelgense (supergiant star)	-4	invisible
The faintest star visible with naked eye	+0.5	-5.6
Andromeda galaxy	+3.4	-20.7
Quasar in the distant Universe	+28	-30

Distance measurement - parallax

- The method of annual parallax (p) is the only one to give a direct measurement of stellar distance

$D=R / \theta$ (θ in radian), and R is the mean Earth-Sun distance ($=1 \mathrm{AU}$)
$D_{p c}=1 / p$ (p in arcseconds $\equiv 1 / 3600$ degree)
- 1 parsec: distance from which R is 1 " (= 3.26 ly)
- Photographic plates: $p \sim 0.01$ " HIPPARCOS ESA satellite (1989): $p \sim 0.001 "$
GAIA ESA satellite (2013): $p \sim 10^{-6}$ "
$\rightarrow D \sim$ Mpc (!) [Milky Way ~ 25 kpc]

The Hertzprung-Russell (HR) diagram

- Diagram found in 1911-1913 named after the two astronomers Hertzprung and Russell
- Luminosity classes
I. Supergiants
II. \& III. Giants
IV. Subgiants
V. Main sequence (MS)
VI. White dwarfs (WD)
- $L=4 \pi R^{2} \sigma_{s} T^{4}$ for a same temperature, the lower the luminosity, the smaller the star radius
- GAIA, $2^{\text {nd }}$ data release > 4 million stars within 5 kly from Sun

HR diagram is a key tool to understand star population and evolution

Star clusters

Open cluster

- M45 - The Pleiades
~ 500 stars (some are hot)
age: 4×10^{7} years (young)
distance: 120 pc (close)

Globular cluster

- M13 - Hercules
~ 300000 stars (!)
age: 11.6×10^{9} years (old)
distance: 6.8 kpc (far)

The HR diagram of star clusters

Open cluster
[$\mathrm{b}-\mathrm{v}$] 。 CORRECTED index

Globular cluster

- Most of the stars are in the main sequence for the Pleiades
- Much more complex HR diagram in case of M13

HR diagram is a key tool to understand star population and evolution

Theoretical HR diagrams

Sun's Post-Main Sequence Evolutionary Track

- The cluster age can be found from
the position of the turn-off phase

Mass-Luminosity Relation

-of stars in the main sequence (not good for, e.g., white dwarfs and giants)
- Based on observations of relatively nearby eclipsing binaries (binary star systems where the orbit plane is along our line of sight)
$\Rightarrow L \mu M^{\nu}$ with $v \sim 3-4$

The mass and fate of stars

The initial mass of stars fixes their lifetime and ultimate fate (white dwarfs, neutron stars, black holes)

2. The cycle of matter and chemical evolution of the galaxy

Eta Carinae (η Car A)

- 100 - $150 \mathrm{M}_{\odot}$
- 2.6 kpc
- Variable blue hypergiant
- Huge explosion 150 years ago (still here)
Eta Carinae - Hubble Space Telescope - WFPC-2

The "death" of stars

- The ring nebula (M57) in the Lyra constellation is a "planetary" nebula (look for the white dwarf)

- The crab nebula (M1) in the Taurus constellation is a supernova remnant (look for the neutron star)

The radioactivity of the Galaxy

$$
{ }^{26} \mathbf{A I}\left(t_{1 / 2}=7.410^{5} \text { years }\right)
$$

- Gamma-ray astronomy (MeV range) allows to observe
 in real time the Galactic enrichment in radioactive nuclei

The cycle of matter in the Galaxy

Stellar abundances

- HD 787 and GC44 are stars of population I
- α Boo (= Arcturus) is probably a star of population II (more metal poor)

The metallicity

- Metal (astronomy): every chemical element heavier than helium (Z>2)
- Metallicity:
- Using mass fractions: $Z=1-X-Y$ where X, Y and Z are mass fractions of H, He and metals, respectively
\rightarrow Sun (surface): $Z=0.0134, X=0.7381, Y=0.2485$
- Using chemical abundance ratios:

$$
[F e / H]=\log _{10}\left(\frac{n_{F e}}{n_{H}}\right)_{s t a r}-\log _{10}\left(\frac{n_{F e}}{n_{H}}\right)_{\text {sun }}
$$

n_{H} and $n_{F e}$ are numbers of H and Fe per unit of volume (density)

- The Fe abundance $\left(n_{F e} / n_{H}\right)$ is one of the most simple to measure in stellar spectra
- Examples
- $[\mathrm{Fe} / \mathrm{H}]_{\odot}=0$ (metallicity of the proto-solar cloud 4.6×10^{9} years ago)
- Stars of population II ("metal"-poor): [Fe/H] <-1 (1/10 of the solar metallicity

Models of Galactic Chemical Evolution

Goals:

- Compute time and spatial evolution of isotope abundance
Model:
- Independent radial annulus ($\mathrm{R}_{\odot}=$ 8.5 kpc)

Key ingredients:

- Star Formation Rate (SFR) in the Galaxy (M_{\odot} per year)
- Initial Mass Function (IMF) of the stars at the time of their formation
- Lifetime of the stars as a function of mass and metallicity
- Production yields of the isotopes in each star (nucleosynthesis)
- Stellar matter ejection rate (stellar winds, supernovae)
- Mixing with the interstellar gas (instantaneous or delayed)
- Interaction of the Galaxy with the intergalactic medium (gas infall, ejection by galactic wind, ...)
\rightarrow each of these ingredients is a research topic by itself

Galactic history
 in the solar neighbourhood

- Solar neighbourhood: region of volume $<0.5 \mathrm{kpc}^{3}$ around the sun

(800z) sozluexd

A model for the solar abundances

- The X_{i} (mass fraction) from ${ }^{12} \mathrm{C}$ to ${ }^{68} \mathrm{Zn}$ are reproduced within a factor of two (!)
- ${ }^{15} \mathrm{~N}$ is most probably synthesized in classical novae

3. The solar or "cosmic" abundances

The solar photosphere (NASA)

Fragment of the Orgueil meteorite (France 1864), MNHN collection

How to determine solar abundances?

- Earth material (crust) Problem: chemical fractionation strongly modifies the local composition compared to pre-solar nebula

Example: quartz is dominantly SiO_{2}, which is not the composition of the solar system, e.g. $\mathrm{N}(\mathrm{O})=16 \times \mathrm{N}(\mathrm{Si})$

\rightarrow Main source for isotopic composition of elements since chemistry is governed by the number of electrons/protons (not the neutrons)

- Meteorites

Some categories of meteorite formed from material that never experienced high pressure or temperatures, and therefore were never fractionated
\rightarrow direct sampling of the pre-solar nebula

- Photosphere

Sun is formed directly from pre-solar nebula material and its outer layers (largely unmodified) create spectral features

Gifts from Heaven

Up to ~ 200 meteorites / km², mean age 710 kyr , max age 2.5 Myr ! $\left({ }^{36} \mathrm{Cl}\right)$

Classification of meteorites

- Many different types of meteorites
- Classification relies on chemical composition, mineral properties,

Group	Subgroup	Composition	Frequency	Origin
Stony	Chondrites	Fe \& Mg silicates	86 \%	Primitive asteroids \& comets
	Achondrites		8.4 \%	surface
Mixed (stony-iron)		Metallic Fe + $\mathrm{Fe} / \mathrm{Mg}$ silicates	1.1 \%	Mantle/core
Iron		Metallic Fe	4.5 \%	core

- Not all meteorites provide representative solar abundances (most of them are differentiated or have undergone gas-solid fractionation)
- Chondrites are primitive meteorites that underwent little modification after their formation
- Chondrites have chondrules which are small 0.1 - 1 mm size spherical inclusions in matrix
- Chondrites have formed very early in the presolar nebula and remained largely unchanged since then
- Different types: ordinary (79.9 \%), enstatite (1.6 \%) and carbonaceous (4.3 \%)

- Carbonaceous chondrites have different properties (very little heating)
- Cl are considered to be the least altered meteorites
\rightarrow named after Ivuna meteorite (Tanzania, 1938, 705 g)
- Only 5 known meteorites contain Cls chondrites (Alais, Ivuna, Orgueil, Revelstoke, Tonk)

Solar spectrum

Absorption spectra provide the majority of data because the largest number of elements can be observed, and because they are well understood (good models available)

N. A. Sharp, NOAO/NSO/Kitt Peak FTS/AURA/NSF

From spectral lines to abundances

- Each absorption line originates from a specific atomic transition in a specific atom/ion
- Wavelength \rightarrow atomic species
- Intensity \rightarrow abundance
- The equivalent width (W) describes the width a rectangular spectral line must have in order to have the same total absorption line as the actual line

- Simple absorption in an atmosphere layer of thickness Δx

$$
I=I_{0} e^{-n \sigma \Delta x}
$$ where I is the flux, I_{0} the continuum flux, σ the absorption crosssection, and n the number density of absorbing atoms

\rightarrow if σ is known, one can determine the abundances

- Determination of cross-section is not easy! Oscillator strength (em transition probability between atomic levels), line width (lifetime) depends on natural width, frequency of collisions (P), Doppler broadening (T)

Spectrum synthesis

A good stellar atmosphere model is needed

- Effective temperature
- Surface gravity
- "metallicity"

Assumptions

- Plane-parallel geometry
- Homogeneity
- Stationarity
- Hydrostatic equilibrium

- Radiative equilibrium
- Local Thermodynamic Equilibrium (LTE)

Photospheric vs meteoritic abundances

- Chondrites Cl and solar photosphere have extremely similar composition over at least 9 orders of magnitude
- Chondrites Cl condensed from a gas having the same chemical composition as the Sun

The solar abundance curve

4. Birth of stars

The "Pillars of Creation" within the Eagle nebula (M16), Hubble (2014)

MHD simulations of star formation

- Basic principle: gravitational contraction of a molecular $\left(\mathrm{H}_{2}\right)$ gas nebula which becomes unstable
- But it depends on the turbulence generated by the winds from massive stars and the shock waves from supernovae, the interstellar magnetic field, the cosmic rays, ...
\rightarrow Magneto Hydro Dynamic (MHD) simulations
- Gravitational collapse can be spontaneous or triggered by external influence

Density distribution of interstellar gas Audit \& Hennebelle (2010)

The role of massive stars

- Massive stars (winds, supernovae) trigger the birth of new generation of stars

- Gray scale $\rightarrow \mathrm{H} \alpha \rightarrow$ ionized hot gas
- Contours $\rightarrow{ }^{12} \mathrm{CO}$ line \rightarrow cold gas

The virial theorem

- Fundamental theorem describing the properties of auto-gravitating systems at hydrostatic equilibrium (e.g. stars)

$$
\Omega=-2 K
$$

- Gravitational potential energy Ω of a spherical cloud of mass M and radius R :

$$
\begin{aligned}
& \Omega=-\int_{0}^{R} \frac{G m(r)}{r} \times 4 \pi r^{2} \rho(r) d r \\
& \Omega=-\lambda \frac{G M^{2}}{R}
\end{aligned}
$$

where $\lambda \sim 1$ is a factor which depends on the mass density distribution $\rho(r)$ $\rightarrow \lambda=3 / 5$ for a homogeneous sphere

- Kinetic energy of a perfect gas of temperature T where μm_{H} is the mean mass per particle

$$
K=\frac{3}{2} \frac{M k T}{\mu m_{H}}
$$

The Jeans mass

- The Jeans mass is the minimum mass a cloud must have if gravity is to overwhelm pressure and initiate collapse
- Equating $2 K$ and $-\Omega$, one can write $3 \frac{M k T}{\mu m_{H}}=\lambda \frac{G M^{2}}{R}$, and introducing the mean density number n, such as $M=n \mu m_{H} \times \frac{4}{3} \pi R^{3}$, we get the critical Jeans mass:

$$
M_{J}=\left(\frac{1}{\mu m_{H}}\right)^{2}\left(\frac{3 k T}{\lambda G}\right)^{3 / 2}\left(\frac{4}{3} n \pi\right)^{-1 / 2}
$$

- Stability criterion: an isolated, spherical and isothermal cloud is unstable if its mass is greater than M_{J}
- In the molecular gas of the interstellar medium, the mean molecular weight is $\mu \approx 2.4$, and we get:

$$
M_{J} \approx 24 \lambda^{-3 / 2}\left(\frac{T}{10 K}\right)^{3 / 2}\left(\frac{n}{10^{2} c m^{-3}}\right)^{-1 / 2} M_{\odot}
$$

Stars are born in clusters

- During the contraction of a cloud, the central density increases but $T \sim$ constant if radiative cooling is efficient
$\rightarrow M_{j}\left(\propto n^{-1 / 2}\right)$ decreases \rightarrow smaller and smaller regions of the cloud become unstable \rightarrow the cloud fragments \rightarrow star cluster
- About 10^{10} years ago, T was typically $\sim 10^{4} \mathrm{~K} \rightarrow$ globular clusters (e.g. M13) formed from clouds of mass $M_{j} \sim 10^{6} M_{\odot}$

M45 - The Pleiades

M13 - Hercules

5. The internal structure of stars

The sun in extreme ultraviolet (Solar Dynamics Observatory, March 30, 2010)

Equations of stellar struture

For an isolated, static, spherically symmetric star, four basic laws/equations are needed to describe their internal structure

- Mass conservation
- Hydrostatic equilibrium (momentum conservation)
\rightarrow at each radius, forces due to pressure differences balance gravity
- Conservation of thermal energy
\rightarrow at each radius, the change in the energy flux equals the local rate of energy release
- Thermal energy transport
\rightarrow relation between the energy flux and the local gradient of temperature
These basic equations are supplemented by :
- Equation of state (pressure of a gas as a function of its temperature and density)
- Opacities (how transparent the star is to radiation)
- Nuclear energy generation rate

Mass conservation

- Let consider a thin shell at a distance r from the center of the star
- Let define M_{r} as the mass contained inside the sphere of radius r
- Conservation of mass implies that:

$$
\frac{d M_{r}}{d r}=4 \pi r^{2} \rho(r) \quad \begin{aligned}
& 1^{\text {st }} \text { stellar } \\
& \text { structure } \\
& \text { equation }
\end{aligned}
$$

where $\rho(r)$ is the density as a function of the radius

- Total mass of the star is given by

$$
M=\int_{0}^{R} 4 \pi r^{2} \rho(r) d r
$$

Hydrostatic equilibrium

- Hydrostatic equilibrium: balance between gravity and internal pressure
- Pressure (net force due to difference in pressure between upper and lower faces of a cylinder)

$$
F_{P}=P(r) d S-P(r+d r) d S=-\frac{d P}{d r} d r d S
$$

- Gravity:

gravity

$$
F_{g}=-\frac{G M_{r} \times[\rho(r) d r d S]}{r^{2}}
$$

- Momentum conservation: $F_{P}+F_{g}=0$

$$
\frac{d P}{d r}=-\frac{G M_{r} \rho(r)}{r^{2}} \quad \begin{aligned}
& 2^{\text {nd }} \\
& \text { structure } \\
& \text { equation }
\end{aligned}
$$

- Mass coordinate M_{r} is often preferred
$\frac{d P}{d M_{r}}=-\frac{G M_{r}}{4 \pi r^{4}}$
(using mass conservation)

Alternate form of hydrostatic equilibrium equation

Energy generation in stars

How much energy does the Sun need to generate in order to shine as it is?
\rightarrow Sun radiating steadily $\mathrm{L}_{\odot}=4 \times 10^{26} \mathrm{~J} . \mathrm{s}^{-1}$ over $\sim 1 \mathrm{Gyr}$ (geological records) has lost
$\sim 1.2 \times 10^{43} \mathrm{~J}$, corresponding to a converted mass of $10^{26} \mathrm{~kg}(0.01 \%$ of mass of Sun)

Four possible sources of energy

- Cooling or contraction
\rightarrow either Sun would have been much hotter in the past, or contracting slowly same approach (recall Virial theorem: $\Omega=-2 K$)
\rightarrow time during which the total release of gravitational potential energy would have supported the luminosity of the sun (thermal time scale):

$$
t_{t h}=-\frac{\Omega}{L}=\lambda \frac{G M_{\odot}^{2}}{L_{\odot} R_{\odot}} \quad \rightarrow t_{t h} \sim 3 \times 10^{7} \mathrm{yr} \rightarrow \text { another energy source is needed! }
$$

- Chemical reactions
\rightarrow release $\sim 5 \times 10^{-10}$ of their rest mass energy $\ll 10^{-4}$ needed!
- Nuclear reactions
\rightarrow nuclear timescale $t_{\text {nucl }}=\epsilon \times x M_{\odot} / L_{\odot}$, where $\varepsilon \sim 7 \mathrm{MeV} /$ nucl is the energy obtained from the fusion of $4^{1} \mathrm{H}$ into ${ }^{4} \mathrm{He}, x=0.1$ is the mass fraction of the sun used as nuclear fuel $\rightarrow \sim 10^{10}$ years \rightarrow main sequence

Conservation of thermal energy

- Luminosity $L(r)$
\rightarrow net power (erg. s^{-1}) leaving the sphere of radius r
- Energy production rate $\varepsilon(r)$
\rightarrow nuclear energy production rate per mass unit (erg. $\mathrm{s}^{-1} \cdot \mathrm{~g}^{-1}$) at a given density, temperature and chemical composition $\left\{X_{i}\right\} \rightarrow \varepsilon\left(\rho, T,\left\{X_{i}\right\}\right)$
- Energy release in shell: $4 \pi r^{2} \rho(r) \epsilon(r) d r$

- At thermal equilibrium:

$$
\begin{aligned}
& L(r+d r)-L(r)=4 \pi r^{2} \rho(r) \epsilon(r) d r \\
& \frac{d L}{d r}=4 \pi r^{2} \rho(r) \epsilon(r) \\
& \begin{array}{l}
3^{\text {rd }} \text { stellar } \\
\text { structure } \\
\text { equation }
\end{array}
\end{aligned}
$$

\rightarrow luminosity of the nuclear burning core

Thermal energy transport (1)

The energy transport processes determine the temperature gradient $d T / d r$ inside the star

There are 3 ways to transport energy in stars:

- Radiation (energy is carried by photons)
\rightarrow photons produced by nuclear reactions and atomic transitions can (i) scatter with electrons and ions, and (ii) be absorbed and re-emitted many times before reaching the surface: random walk
$\rightarrow(d T / d r)_{\text {rad }}$ given by the opacity coefficients κ
- Convection (energy carried by bulk motions of gas)
\rightarrow convection if $(d T / d r)_{a d}<(d T / d r)_{r a d}$
(Schwarzschild criterion)
1D treatment of stellar convection is uncertain

- Conduction (energy carried by particle motions) \rightarrow only important in extremely dense medium (white dwarf, neutron star...)

Thermal energy transport (2)

- Radiation transport M. Schwartzschild, The Structure and Evolution of the Stars (Princeton; University Press, 1958)

$$
\frac{d T}{d r}=-\frac{3 L(r) \rho(r) \kappa(r)}{16 \pi a c r^{2} T^{3}}
$$

$4^{\text {th }}$ stellar $\quad \kappa$ is the opacity (a mass absoprtion structure coefficient) which depends on the gas equation composition
\rightarrow the photons emitted at high temperature T in the center of the star are continually emitted and reabsorbed, and gradually degraded to longer λ as they proceed outward. In case of the sun, they emerge from the surface as visible light.

- Convection transport m. Harwitt, Astrophysical concepts (New-York; Wiley, 1973)

$$
\frac{d T}{d r}=(1-1 / \gamma) \frac{T(r)}{P(r)} \frac{d P(r)}{d r} \quad \text { (adiabatic, mixing length theory) }
$$

where the ratio of specific heats capacity $\gamma=5 / 3$ for an ideal monoatomic gas

Convection \& radiative zones in

main-sequence stars

$\mathrm{M}>1.15 \mathrm{M}_{\odot}$
Radiative envelop Convective core

$$
\mathrm{M}<0.25 \mathrm{M}_{\odot}
$$

$0.25 \mathrm{M}_{\odot}<\mathrm{M}<1.15 \mathrm{M}_{\odot}$
Convective envelop Radiative core

Solar granulation \rightarrow convective cells (cell size ~ 100 km)

Equation of state (1)

- Total pressure: $P=P\left(\rho, T, X_{i}\right)=P_{g a s}+P_{r a d}=P_{\text {ions }}+P_{e^{-}}+P_{\text {rad }}$
- Pressure integral: $P=\frac{1}{3} \int_{0}^{\infty} v p n(p) d p$
where v is the particle velocity, p its momentum and $n(p) d p$ is the number of particles per unit of volume with momenta within the interval p and $p+d p[v p n(p) d p$ is a momentum flux]
- Radiative pressure \rightarrow blackbody
$n_{\text {rad }}(p)=$ Planck's function $\rightarrow \quad P_{\text {rad }}=a T^{4} / 3$
- Gas pressure \rightarrow Maxwell-Boltzmann distribution (perfect gas)

$$
n(p) d p=n \frac{4 \pi p^{2} d p}{(2 \pi m k T)^{3 / 2}} e^{-\frac{p^{2}}{2 m k T}} \quad \longrightarrow \quad P_{g a s}=n k T=\frac{\rho}{\mu m_{H}} k T
$$

At sun center $\left(T=16 \mathrm{MK}, \rho=150 \mathrm{~g} . \mathrm{cm}^{-3}\right) \rightarrow \mathrm{P}_{\mathrm{rad}} / \mathrm{P}_{\mathrm{gas}}=7 \times 10^{-4}$ (radiation pressure negligible!)

Equation of state (2)

- Degenerate electron gas \rightarrow in the core of some stars the density is so high that quantum effects become important
- Heisenberg uncertainty principle: $\Delta V \times \Delta^{3} p \geq h^{3}$
\rightarrow if ρ increases - that is $\Delta V\left(\mu \rho^{-1}\right)$ decreases - until $\Delta^{3} p>p_{\mathrm{th}}$, the pressure becomes higher than that inferred from the temperature
- In the limit of complete degeneracy, where all states of the phase space are occupied by 2 electrons of opposite spin (Pauli exclusion principle):

$$
\begin{aligned}
& n_{e}(p)=\frac{2}{\Delta V}=\frac{2}{h^{3}} \Delta^{3} p=\frac{8 \pi p^{2} d p}{h^{3}} \text { for } p<p_{F} \text { (Fermi momentum) } \\
& \rightarrow P_{e^{-}}=k \rho^{\eta} \text { with } \eta=5 / 3 \text { (non-relativistic) or } 4 / 3 \text { (relativistic) }
\end{aligned}
$$

$P_{e \text { - }}$ does not depend anymore on the temperature (explosive situation!)

Summary

- Structure equations:

$$
\begin{array}{|l|}
\hline \frac{d M_{r}}{d r}=4 \pi r^{2} \rho(r) \\
\hline \frac{d P}{d r}=-\frac{G M_{r} \rho(r)}{r^{2}} \\
\hline
\end{array}
$$

Mass conservation

Hydrostatic equilibrium

$$
\frac{d L}{d r}=4 \pi r^{2} \rho(r) \epsilon(r)
$$

$$
\left.\frac{d T(r)}{d r}\right|_{r a d}=\left.f(L(r), \kappa(r), T) \quad \frac{d T(r)}{d r}\right|_{c o n v}=f(P(r), T)
$$

Energy transport

- Equation of state: $P=P\left(\rho, T, X_{i}\right)$
- Nuclear energy production rate: $\epsilon=\epsilon\left(\rho, T, X_{i}\right)$
- Opacity coefficient: $\kappa=\kappa\left(\rho, T, X_{i}\right)$

Back to the virial theorem

- Total energy of a star is $E=K+\Omega=\Omega / 2=-K$ (virial theorem)
- Because a star shines, E decreases with time
$\rightarrow \Omega$ decreases $(\Omega<0) \rightarrow R$ decreases \rightarrow the star contracts
$\rightarrow K$ increases \rightarrow the mean temperature of the star increases
- Half of the gravitational energy lost by the star turns into heat ($K=-\Omega / 2$), the other half is radiated away ($E=\Omega / 2$)
- The increase of the central temperature T_{c} allows the ignition of successive nuclear burning phases

Bibliography

- Principles of Stellar Evolution and Nucleosynthesis Donald D. Clayton, The University of Chicago Press, 1968 ISBN 0-226-10953-4
- Introduction to Stellar Astrophysics (Vol 1. and Vol 3.) Erika Böhm-Vitense, Cambridge University Press, 1992 ISBN 0-521-34402-6
- Les météorites

Matthieu Gounelle, Presses Universitaires de France, 2009 ISBN 978-2-13-057428-6

