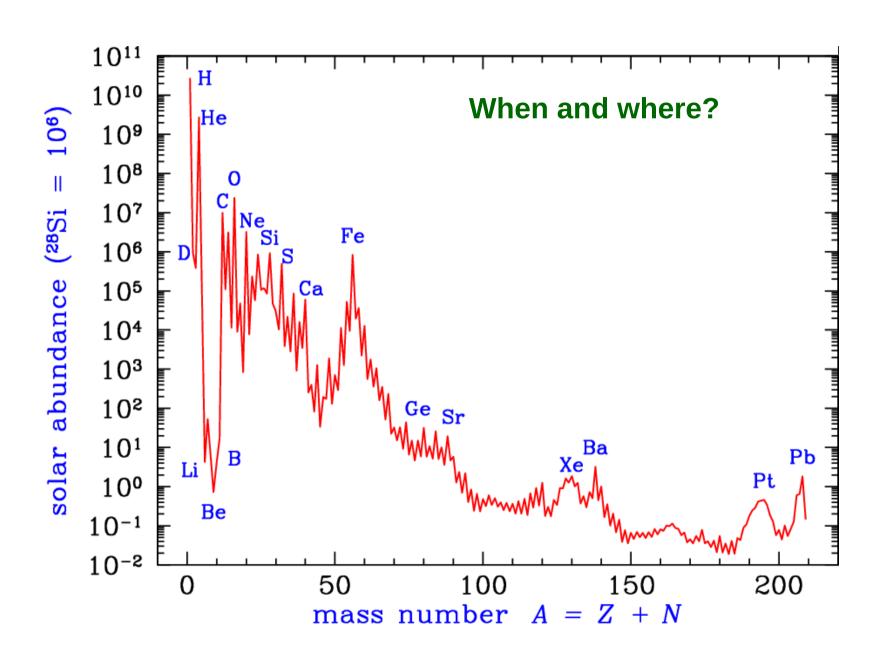
From nuclei to stars

Nucleosynthesis processes in the Universe: from Big-Bang to stars

Nicolas de Séréville (nicolas.de-sereville@ijclab.in2p3.fr)
Laboratoire de Physique des 2 Infinis Irène Joliot Curie
Université Paris Saclay



Outline

- Lecture 1: Introduction to nuclear astrophysics
- Lecture 2: Nucleosynthesis processes in the Universe
 - 1. A little bit of history
 - 2. Big-Bang nucleosynthesis
 - 3. Cosmic ray nucleosynthesis
 - 4. Stellar nucleosynthesis
 - Hydrogen burning: p-p chains and CNO cycles
 - Helium burning
 - Advanced burning stages: C, Ne, O and Si burning
 - Explosive nucleosynthesis
 - Nucleosynthesis beyond iron: s- and r-process
 - 5. Back to the Hertzsprung-Russel diagram
- Lecture 3: Cross-sections and thermonuclear reaction rates
- Lecture 4: Experimental approaches in nuclear astrophysics

1. A little bit of history

Important dates

- 1920 Aston: mass of the helium atom is slightly less than four times the mass of the hydrogen
- 1928 Eddington: suggests that Aston's discovery would explain the energy generation in Sun
- 1928 Gamow, Condon & Gourney: 1st calculation of the quantum tunneling probability
- 1929 Atkinson & Houtermans: suggest that Gamow's results may explain energy generation
- 1932 Cockcroft & Walton: 1st induced nuclear reaction 7 Li(p, α) $\alpha \rightarrow pp$ chain
- 1934 Lauritsen & Crane: 10 min radioactivity produced ¹²C(p,γ)¹³N → CNO cycle
- 1936 Atkinson, Bethe & Critchfield: p+p reactions give correct energy generation in Sun
- 1936 von Weizsaker & Bethe: energy generation in stars produced via the CNO cycle
- 1957 Burbridge, Burbridge, Fowler & Hoyle Overview of nucleosynthesis processes

- 1957 Cameron
- 1968 1st detection of neutrinos emitted by the Sun core
- 1969 1^{st} detection of ²⁶Al γ -ray decay in the Milky Way
- 1987 γ-ray detection of ⁵⁶Co and ⁵⁷Co decays in supernova SN 1987A
- 2013 observational evidences of heavy nuclei nucleosynthesis in the coalescence of a binary system of two neutron stars (GRB 130603B)
- 2017 Observational confirmation of heavy nuclei nucleosynthesis in a binary neutron star merger (GW 170817)

Two views....

Primordial nucleosynthesis

Bethe (" $\alpha \beta \gamma$ ")

Gamow

« All the elements were formed just after Big-Bang »

Phys. Rev. 73. (1948) 803

Almost true for D, He and a part of 7 Li **BUT** no stable isotopes with A = 5 and A = 8 (mass gap)

Stellar nucleosynthesis

Burbridge Burbridge Fowler (B²FH)

Hoyle

reviews of Modern Physics

Synthesis of the Elements in Stars*

VOLUME 29, NUMBER 4

E. MARGARET BURBIDGE, G. R. BURBIDGE, WILLIAM A. FOWLER, AND F. HOYLE

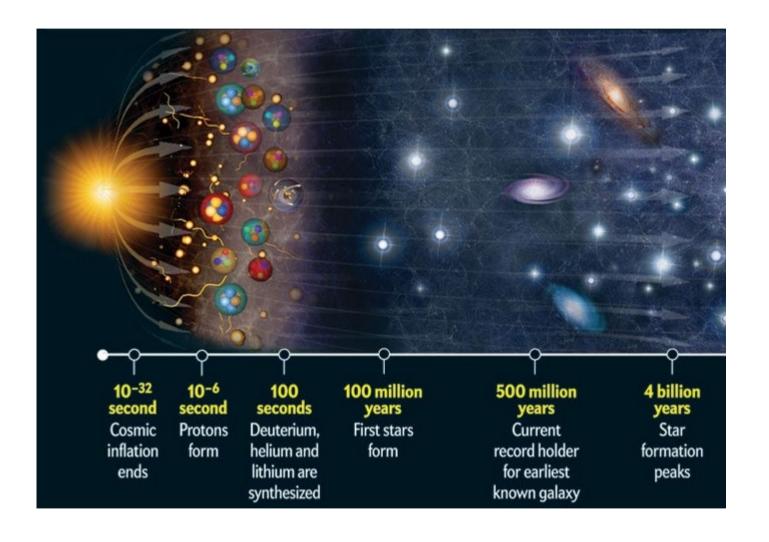
Kellogg Radiation`Laboratory, California Institute of Technology, and Mount Wilson and Palomar Observatories, Carnegie Institution of Washington, California Institute of Technology, Pasadena, California

« All elements are synthesized in stars through various processes »

Rev. Mod. Phys. 29 (1957) 547

Остовек, 1957

B²FH heritage


Identified nucleosynthesis processes

- Primordial (Big-Bang) nucleosynthesis
- Hydrogen and Helium burning
- "e" process (iron peak)
- "x" process (LiBeB; "x" for unknown)
- "r" process (rapid neutron capture)
- "s" process (slow neutron capture)
- "p" process (proton rich)

Today

- "x" is identified as non-thermal nucleosynthesis (cosmic rays)
- Additional burning stages identified: C, Ne, O, Si

2. Big Bang nucleosynthesis

Observational pillars for Big-Bang model

- The expansion of the Universe Galaxies move away from each other and from us according to Hubble's law: $V = H_0 \times D$, where $H_0 \approx 70$ km/s/Mpc is the Hubble "constant"
- The Cosmic Microwave Background radiation (CMB)
 Black body radiation at 2.7 K corresponding to the redshifted spectrum emitted when the Universe became transparent (Penzias & Wilson, 1965)
- Primordial nucleosynthesis (BBN) of light elements
 BBN reproduces the observed primordial abundances over a range of nine orders of magnitudes!

Nucleosynthesis (1)

- For T > 10 GK, the energy density is dominated by radiation (photons and neutrinos), and all weak, strong and electromagnetic processes established a thermal equilibrium
- $n \leftrightarrow p$ equilibrium driven by weak interactions:

(1):
$$v_e + n \leftrightarrow e^- + p$$
 (2): $\overline{v}_e + p \leftrightarrow e^+ + n$ (3): $n \leftrightarrow p + e^- + \overline{v}_e$
$$\boxed{\frac{N_n}{N_p} = e^{-Q_{np}/kT}}$$
 $Q_{np} = 1.29 MeV$

 Equilibrium as long as the weak reaction rate [(1) + (2)] are faster than the expansion rate, hence breaks out when:

$$\left| \Gamma_{n \leftrightarrow p} \sim H(t)
ight|$$
 Γ : reaction rates

• Decoupling and freezeout $t \approx 10$ s after Big-Bang when $T \approx 3$ GK and $N_n/N_p \approx 1/6$

Nucleosynthesis (2)

 After freezeout the dominant weak interaction is the decay of free neutrons to protons

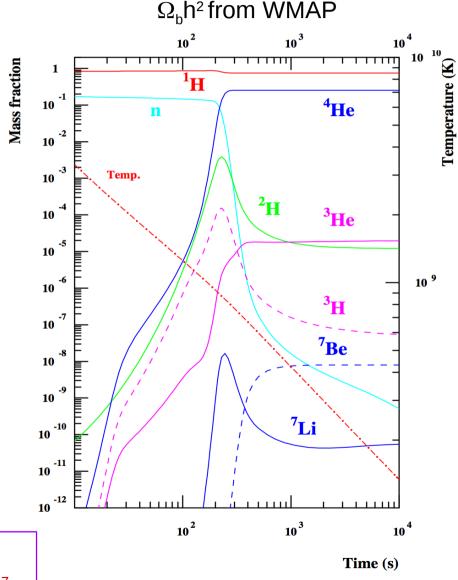
$$n \rightarrow p + e^{-} + \overline{v}_{e}$$

Neutrons decay until T is low enough so that:

$$n + p \rightarrow D + \gamma$$

becomes faster than deuterium photodisintegration

$$\gamma + D \rightarrow n + p$$


- This occurs at $t \approx 200$ s (3 min) when $T \approx 0.9$ GK and $N_n/N_p \approx 1/7$
- Nucleosynthesis starts to produce essentially ⁴He together with traces of D, ³He, ⁷Li, ...

$$N_p/N_p \approx 1/7 = 2/14$$
 $\rightarrow X(^4He) \approx 4 / (4 + 12) \approx 0.25$

The canonical BBN reaction network

- Standard BBN: no convection, no mixing, no diffusion, known physics
- The 12 reactions of standard BBN:

From the proof
$$\tau_{n} = 880 (4) \text{ s}$$
 $P + n \rightarrow D + \gamma$
 $D + p \rightarrow {}^{3}He + \gamma$
 $D + D \rightarrow {}^{3}He + n$
 $D + D \rightarrow T + p$
 $T + D \rightarrow {}^{4}He + n$
 $T + {}^{4}He \rightarrow {}^{7}Li + \gamma$
 $He + D \rightarrow p + {}^{4}He$
 $He + D \rightarrow p + {}^{4}He$
 $He + {}^{4}He \rightarrow {}^{7}Be + \gamma$
 $He + D \rightarrow {}^{4}He + {}^{4}He$
 $He + {}^{4}He \rightarrow {}^{7}Be + \gamma$
 $He + {}^{4}He \rightarrow {}^{4}He + {}^{4}He$
 $He + {}^{4}He \rightarrow {}^{7}Li + p$

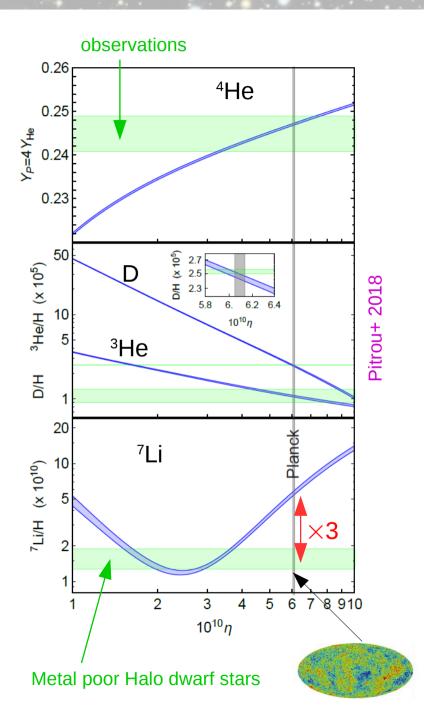
Number of baryons per photon: $\eta = n_b/n_y$

Baryonic density of the Universe: $\Omega_h h^2 = 3.65 \times 10^7 \, \eta$

Predictions vs observations

Observations from a set of primitive objects when the Universe was young

• D observations: in remote cosmological clouds (i.e. at high redshift) on the line of sight of quasars


$$D/H = (2.527 \pm 0.030) \times 10^{-5}$$

- 4 He observations: in H II (ionized H) regions of blue compact galaxies 4 He/H = 0.2449 \pm 0.0040
- ³He observations: in HII regions of *our* Galaxy

3
He/H = (1.1 ± 0.2) x 10^{-5}

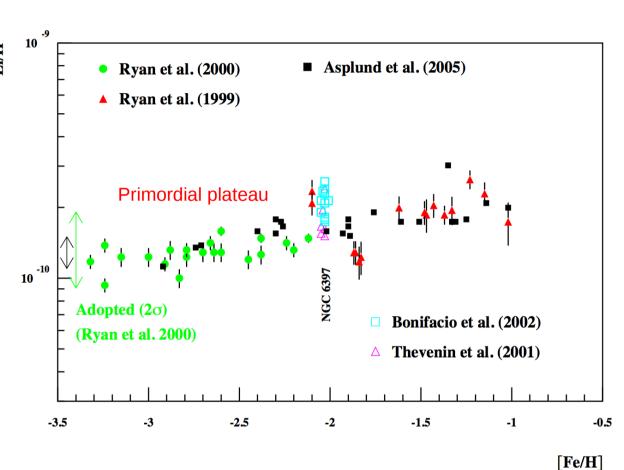
• ⁷Li observations: at the surface of low metallicity stars in the halo of our Galaxy

$$^{7}\text{Li/H} = 1.58^{+0.35}_{-0.28} \text{ x} 10^{-10}$$

Solutions to the ⁷Li problem?

Several possibilities are considered

- Astrophysical solution
- Nuclear physics solution
- Physics beyond the standard model

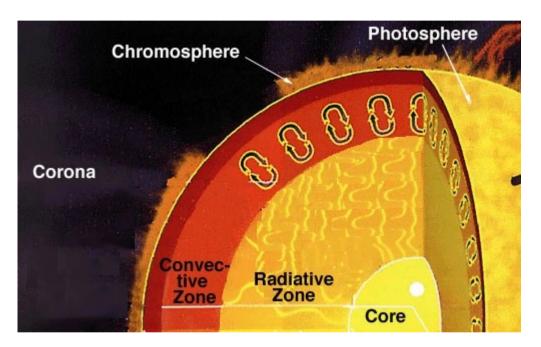

⁷Li abundances

Primordial ⁷Li abundance measured in old metal poor halo dwarf stars

Spite plateau (Spite & Spite, 1982)

- Li/H $\approx 1.12 \times 10^{-10}$
- Very low dispersion

Spite plateau indicates that the bulk of the lithium is unrelated to galactic nucleosynthesis processes and thus is primordial


How reliable is Li abundance determination?

- → Systematic errors in the extraction of Li abundances due to the used atmosphere models?
- → unlikely Asplund and Lind 2010

⁷Li stellar destruction?

Could atmospheric ⁷Li be depleted by rotationally induced mixing and/or diffusion?

- Lithium easily burned in stars (low binding energy)
 - \rightarrow ⁷Li(p, α) α for T > 2.5 MK
- Convection brings surface material to deeper layers
 - → lithium burning

Not enough and not uniform ⁷Li destruction

- Metal poor halo stars have shallower convective zones than in solar metallicity stars
- Stars of different masses have different convective zone size
 - → larger scatter around ⁷Li plateau should be observed

Nuclear solution to ⁷Li problem?

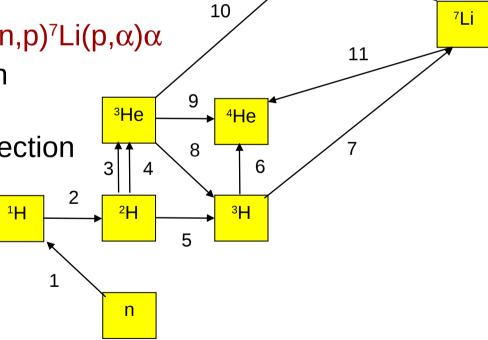
• ^7Li produced by ^7Be decay (EC) at high $\Omega_{_{D}}\text{h}^2$

Any additional ⁷Be destruction would alleviate the ⁷Li problem

⁷Be

12

- Main ⁷Be production mechanism: ³He(⁴He,γ)⁷Be
 - → Various measurements of the cross-section 10% uncertainty


• Main ⁷Be destruction mechanism: ${}^{7}Be(n,p){}^{7}Li(p,\alpha)\alpha$

→ ⁷Be(n,p)⁷Li well known cross-section 1% uncertainty

 \rightarrow ⁷Li(p, α) α 6% uncertainty on cross-section

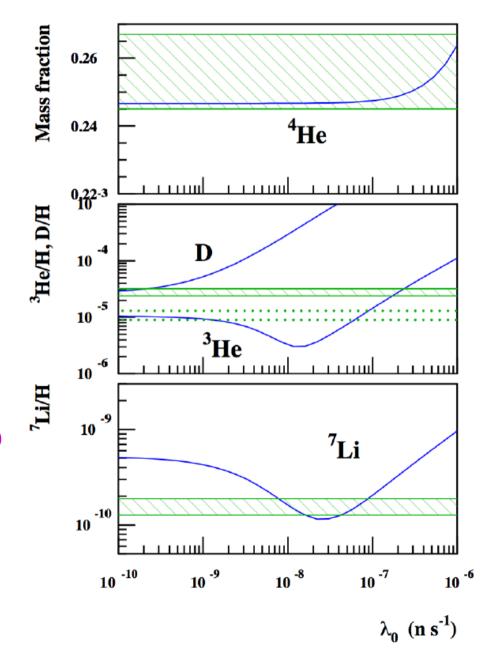
Secondary destruction mechanisms
 ⁷Be+d, ⁷Be+³He, ⁷Be+⁴He....

→ all experimentally studied, and none can alleviate the ⁷Li problem

Nuclear physics is very unlikely to solve the ⁷Li problem

Physics beyond the standard model?

Idea: late time neutron injection


- enhance 7 Be destruction by 7 Be(\mathbf{n} , \mathbf{p}) 7 Li(\mathbf{p} , α) α reactions
- Alleviate the Li problem at the expense of deuterium overproduction

Two examples among many....

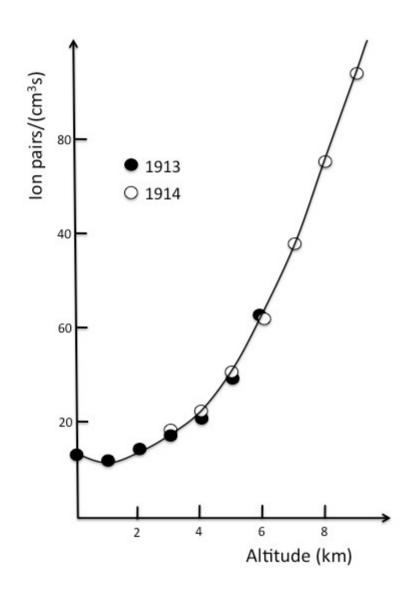
 Decays of heavier meta-stable (100 – 1000 s) particles that inject additional neutrons

(Jedamzik (2004, 2006), Kawasaki+ (2005), Ellis+ (2005))

- Existence of a mirror universe in which neutrons can oscillate to our world (Coc+ 2013)
 - → effective late time neutron injection

Summary

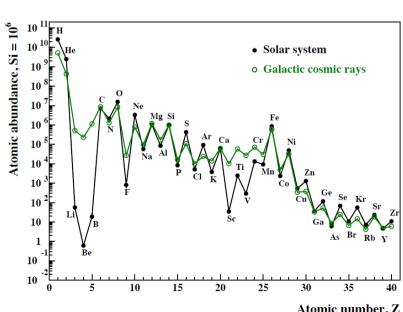
- Big-Bang Nucleosynthesis (BBN) produces, between 3 min and 20 min,
 H, D, He and part of Li
- Heavier elements nucleosynthesis is prevented because:
 - Larger Coulomb barriers for elements with higher atomic numbers (see next Lecture)
 - Lack of isotope of mass number A = 5 and A = 8
 - Decreasing matter density as the Universe expands


Further reading...

- C. Pitrou, A. Coc, P. Uzan & E. Vangioni, *Physics Reports* (2018)
- NPAC, cosmology course

3. Cosmic rays nucleosynthesis

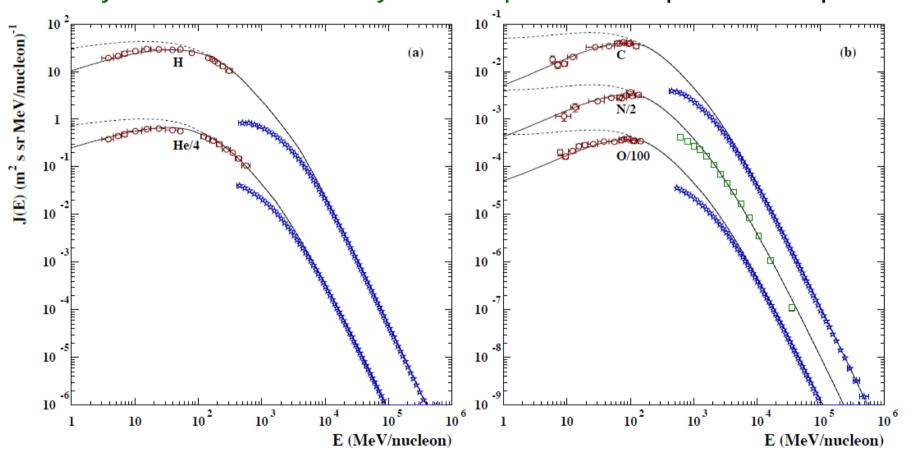
Hess (center) lands after his balloon flight in 1912


Ionization as a funtion of altitude (Hess)

What is the origin of LiBeB isotopes?

What are the processes producing ^{6,7}Li, ⁹Be and ^{10,11}B?

- Big-Bang Nucleosynthesis
 - significant amount of ⁷Li
 - 6Li, 9Be and 10,11B abundances predicted from BBN are at least 3 orders of magnitude below the abundances measured in metal-poor stars
- Stellar nucleosynthesis
 - Light elements are fragile enough (relatively low binding energy per nucleon) to be destroyed in stars during quiescent burning
 - ⁷Li in classical novae (explosive), AGB (?)
 - ⁷Li, ¹¹B by ν-induced spallation reactions
- Galactic Cosmic Rays (GCR)
 - Similar abundances than solar system with notable exception for LiBeB!!

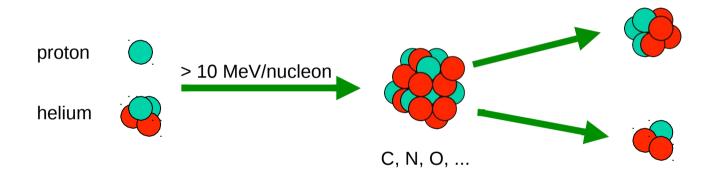


20/76

Cosmic rays properties

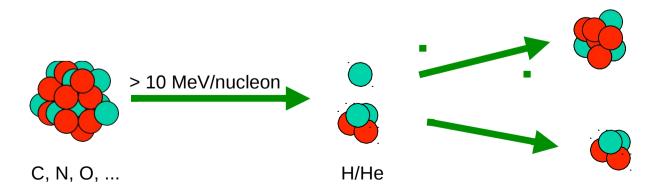
Composition: H (90 %), He (9 %), C, N, O, e- (1 %)

Cosmic rays are not in thermodynamic equilibrium → power law spectrum



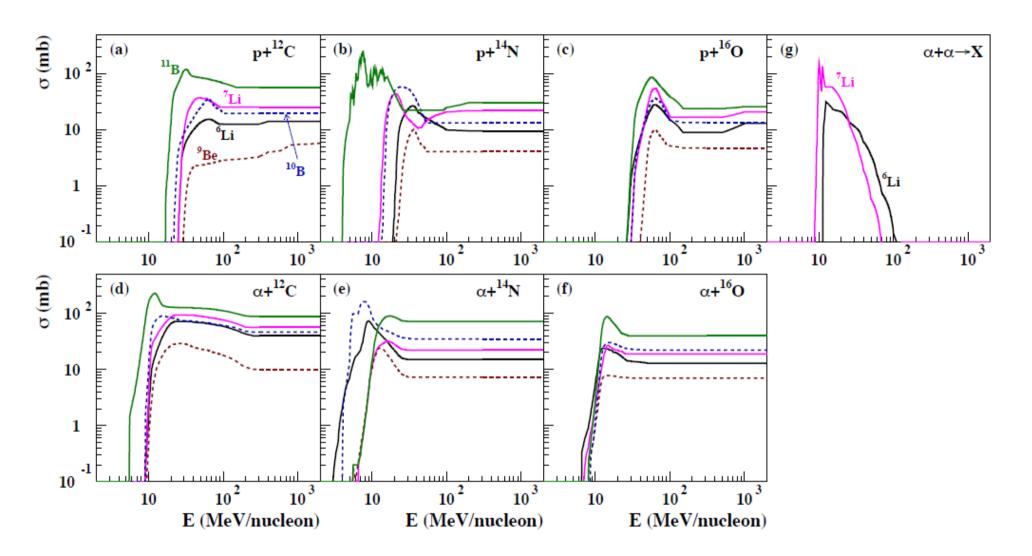
Data from *Voyager 1* probe (red circles), AMS-02 experiment (blue stars) and HEAO-3-C2 (green squares)

Spallogenic nucleosynthesis


Non thermal nucleosynthesis induced by cosmic rays

Spallation: "heavy" nucleus (C, N, O, ...) emits lighter fragments (Li, Be, B, ...) as a result of a collision with a high-energy particle (H, He)

LiBeB emitted at much lower energy than incident H/He


Inverse spallation: heavy nucleus impinges light nucleus

LiBeB emitted at about same energy per nucleon as incident C, N, O, ...

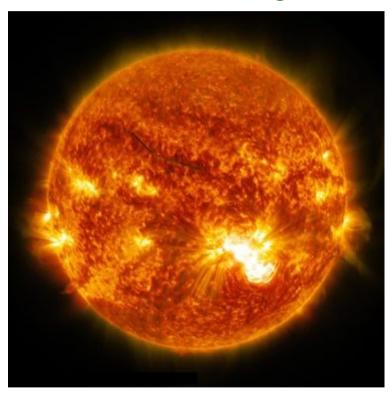
→ must slow down to rest (small survival probability)

Spallation cross-sections

- The decreasing sequence of B, Li and Be matches the B, Li and Be GCR abundances
- $\alpha + \alpha$ reactions important for production of ^{6,7}Li isotopes

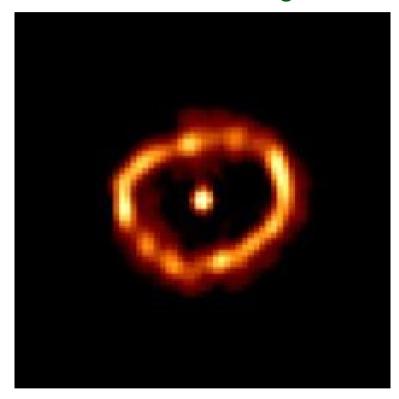
Summary

Galactic Cosmic Rays play a major role in the production of the LiBeB elements


	BBN	GCR	v in core- collapse supernovae	Low-mass stars
⁶ Li		100 %		
⁷ Li	12 %	18 %	< 20 %	50 – 70 %
⁹ Be		100 %		
¹⁰ B		100 %		
¹¹ B		70 %	30 %	

Further reading...

- V. Tatischeff & S. Gabici, *Annual Reviews* (2018)
- N. Prantzos, Astronomy & Astrophysics 542, A67 (2012)


4. Stellar nucleosynthesis

Quiescent (hydrostatic) stellar burning

Sun, Solar Dynamics Observatory

Explosive stellar burning

Classical nova, Nova Cygni 1992, HST

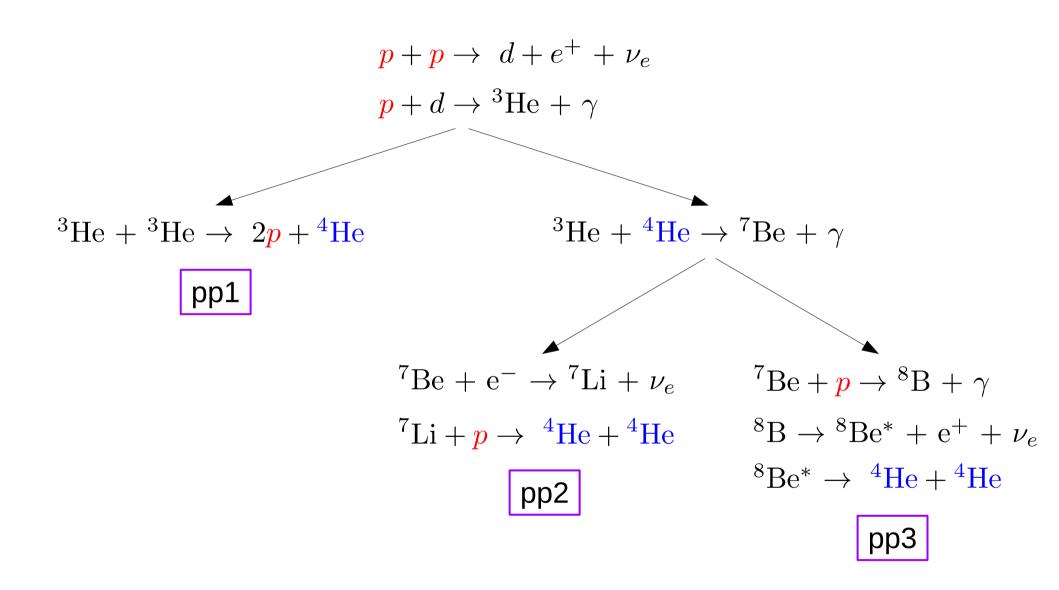
4.1 Quiescent hydrogen burning

- Where does it take place?
 - Core of main-sequence stars (8 55 MK)
 - Core of the Sun (15.6 MK)
 - Burning shell in AGB stars (45 100 MK)
- How does it work?

•
$$4p \rightarrow {}^4{\rm He} + 2{\rm e}^+ + 2\nu_e$$
 $(Q=26.73~{\rm MeV})$ ashes energy source

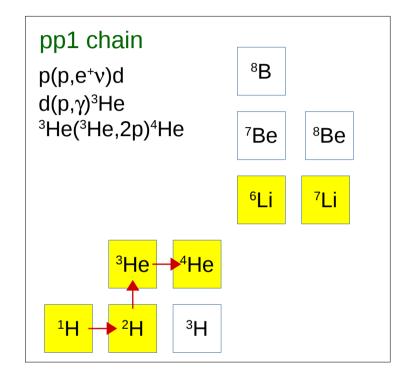
 Probability for the simultaneous interaction of 4 protons far too small → reactions sequence

- Who & when?
 - Bethe & Critchfield (1938)
 - von Weizsaecker (1938)


pp chain

CNO cycle

Hans Bethe (1906 – 2005)


The proton – proton (pp) chains

Note: neutrinos provide direct evidence that nuclear reactions occur (see later)

The pp1 chain (1)

- Succession of 3 reactions producing almost 90 % of Sun's energy
- First reaction: $p + p \rightarrow d + e^+ + v (Q = 1.44 \text{ MeV})$
 - → strong + weak interactions
 - → cross-section is about 20 orders of magnitude smaller than for nuclear (strong) interaction!!
 - → cannot be measured
 - → can be calculated

- All subsequent reactions involve nuclear and electromagnetic interactions
 - → much faster
- Second reaction: $p + d \rightarrow {}^{3}He + \gamma (Q = 5.49 \text{ MeV})$
 - → many measurements since 1962, including one at LUNA in 2002 (see lecture 4)

The pp1 chain (2)

- Deuterium abundance in the core of the Sun
 - Temporal evolution of deuterium = production [p(p,e+v)d]

- destruction [d(p, γ)³He]

$$\frac{dN_d}{dt} = \frac{N_H^2}{2} \left\langle \sigma v \right\rangle_{p(p,e^+\nu)} - N_H N_d \left\langle \sigma v \right\rangle_{d(p,\gamma)}$$

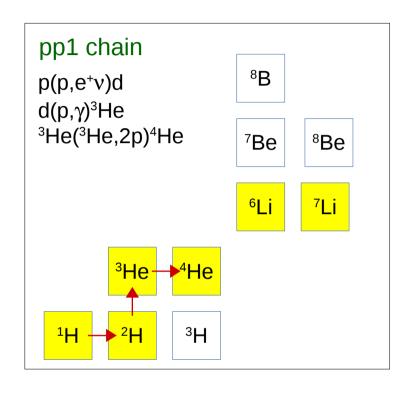
At equilibium:

$$\left(\frac{N_d}{N_H}\right)_e = \frac{\langle \sigma v \rangle_{p(p,e^+\nu)}}{2 \langle \sigma v \rangle_{d(p,\gamma)}}$$

For T = 15.6 MK (Sun)

$$\left(\frac{N_d}{N_H}\right)_e = \frac{\langle \sigma v \rangle_{p(p,e^+\nu)}}{2 \langle \sigma v \rangle_{d(p,\gamma)}} \qquad \qquad \frac{\langle \sigma v \rangle_{p(p,e^+\nu)} = 1.5 \times 10^{-43} \text{cm}^3 \text{s}^{-1}}{\langle \sigma v \rangle_{d(p,\gamma)}} = 2.0 \times 10^{-26} \text{cm}^3 \text{s}^{-1}$$

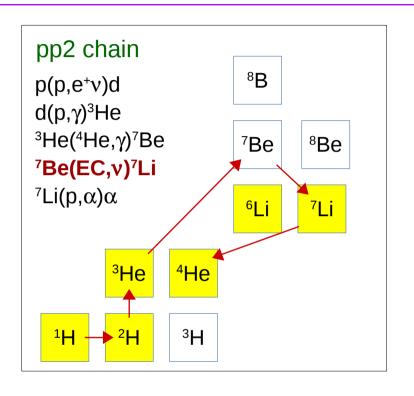
$$\left(\frac{N_d}{N_H}\right)_e = 7.5 \times 10^{-18} \qquad \begin{array}{l} \text{Solar D/H} \approx 2 \text{x} 10^{\text{-5}} \\ \rightarrow \text{ D from BBN} \end{array}$$

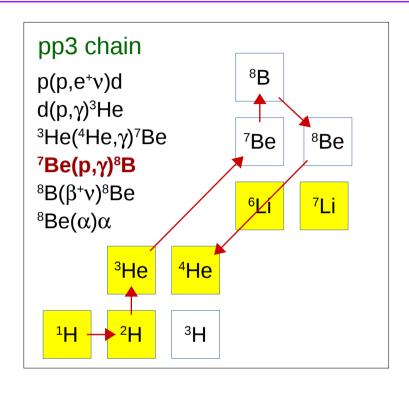

Lifetime of a proton and a deuterium in the core of the Sun

we consider
$$ho_{\rm c}$$
 = 150 g cm⁻³ and X_H ~ X_{He} ~ 0.5 \to N_H = 4.5 10²⁵ cm⁻³
$$\tau_H = \frac{1}{N_H \, \langle \sigma v \rangle_{p(p,e^+\nu)}} = 4.7 \times 10^9 \ {\rm yr} \qquad \tau_d = \frac{1}{N_H \, \langle \sigma v \rangle_{d(p,\gamma)}} = 1.1 \ {\rm s}$$

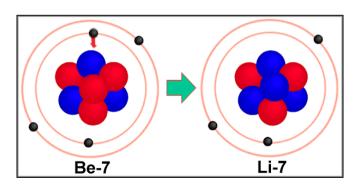
The pp1 chain (3)

Possible reactions for ³He burning

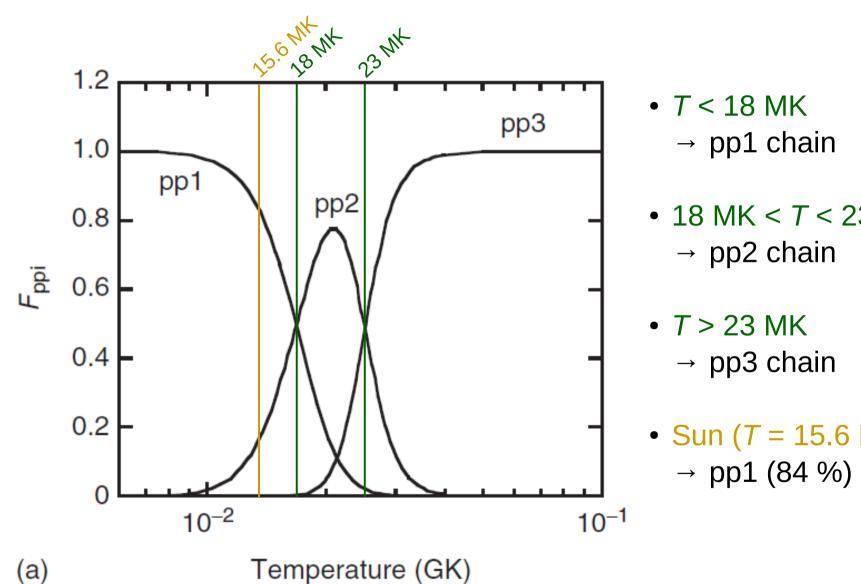

Reaction	Q (MeV)	S(0) (keV b)
³He(d,γ)⁵Li(p)⁴He	16.39	~0.3
³He(d,p)⁴He	18.35	6240
³ He(³ He,γ) ⁶ Be(2p) ⁴ He	11.50	~0.8
³He(³He,2p)⁴He	12.86	5320 (80)
³He(⁴He,γ) ⁷ Be	1.59	0.57 (4)



- ${}^{3}\text{He} + p \rightarrow {}^{4}\text{Li} \rightarrow {}^{3}\text{He} + p \quad (\tau = 10^{-22} \text{ s})$
- ³He + d negligible given the low deuterium abundance
- 3 He + 3 He \rightarrow 2p + 4 He (Q = 12.86 MeV) \rightarrow Third reaction of the pp1 chain
 - → has been measured in LUNA (see lecture 4)
- If N(4 He) >> N(3 He) [factor > 10 4] then 3 He(4 He, γ) 7 Be is activated \rightarrow pp2 & pp3 chains


The pp2 and pp3 chains

⁷Be destruction: competition between electronic capture (EC) and proton capture



- ⁷Be decays by EC and its lifetime depends on its charge state
- In stars, 7 Be fully ionized and then capture free electrons, so τ depends on n_{e} and T. In the Sun's core τ_{s} = 1.6 τ_{lab} = 120 days

• The ${}^{7}\text{Be}(p,\gamma){}^{8}\text{B}$ reaction is faster than ${}^{7}\text{Be}$ EC for T > 25 MK \rightarrow pp3 chain

Relative contribution of the 3 pp chains

• 18 MK < T < 23 MK

- Sun (*T* = 15.6 MK)
 - → pp1 (84 %) + pp2 (14 %)

The pp chains in the Sun

$$p + p \to d + e^{+} + \nu_{e} \text{ [0.26 MeV]} \qquad p + e^{-} + p \to d + \nu_{e} \text{ [1.44 MeV]}$$

$$99.75 \% \qquad 0.25 \%$$

$$p + d \to {}^{3}\text{He} + \gamma$$

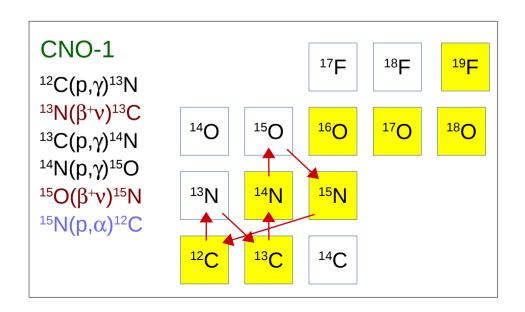
$$86 \% \qquad 14 \%$$

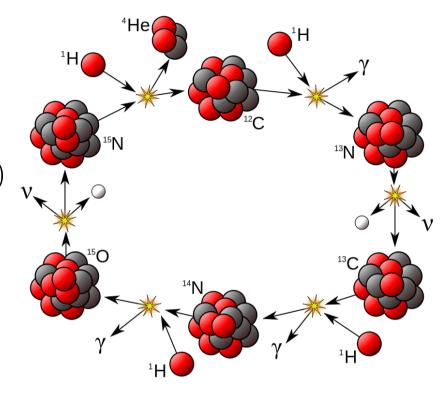
$$3 \text{He} + {}^{4}\text{He} \to {}^{7}\text{Be} + \gamma$$

$$pp1 \qquad pp2 \qquad 99.89 \%$$

$${}^{7}\text{Be} + e^{-} \to {}^{7}\text{Li} + \nu_{e} \text{ [0.86 MeV]} \qquad {}^{7}\text{Be} + p \to {}^{8}\text{B} + \gamma$$

$${}^{7}\text{Li} + p \to {}^{4}\text{He} + {}^{4}\text{He} \qquad {}^{8}\text{B} \to {}^{8}\text{Be}^{*} + e^{+} + \nu_{e} \text{ [6.80 MeV]}$$

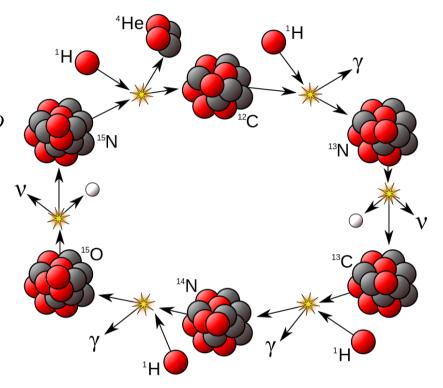

$${}^{8}\text{Be}^{*} \to {}^{4}\text{He} + {}^{4}\text{He}$$


The CNO cycle (1)

 In population I stars (second, third... generation of stars), the elements C, N and O serve as catalysts of the transformation:

$$4p \to {}^{4}\text{He} + 2e^{+} + 2\nu_{e} \quad (Q = 26.73 \text{ MeV})$$

- There are four sets of reactions converting H to He → 4 CNO cycles
 - → we will focus on the CNO-1 cycle

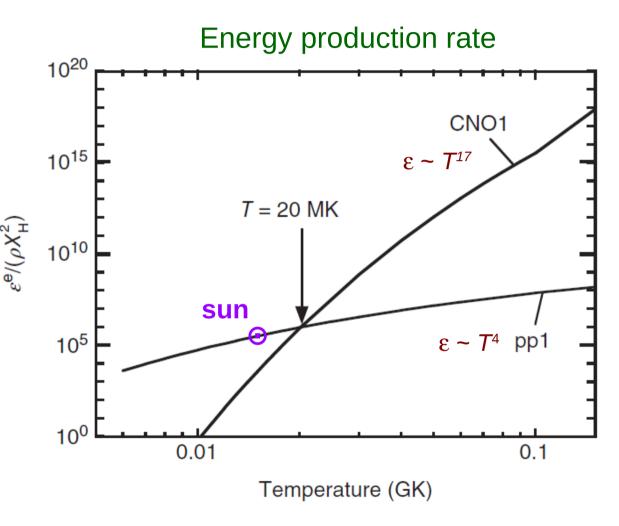


$$T_{1/2}(^{13}N) = 9.965 \text{ min}$$

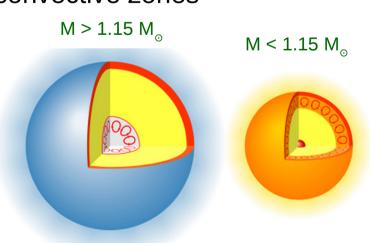
 $T_{1/2}(^{15}O) = 122.24 \text{ s}$
 $T_{1/2}(^{17}F) = 64.49 \text{ s}$
 $T_{1/2}(^{18}F) = 109.77 \text{ min}$

The CNO cycle (2)

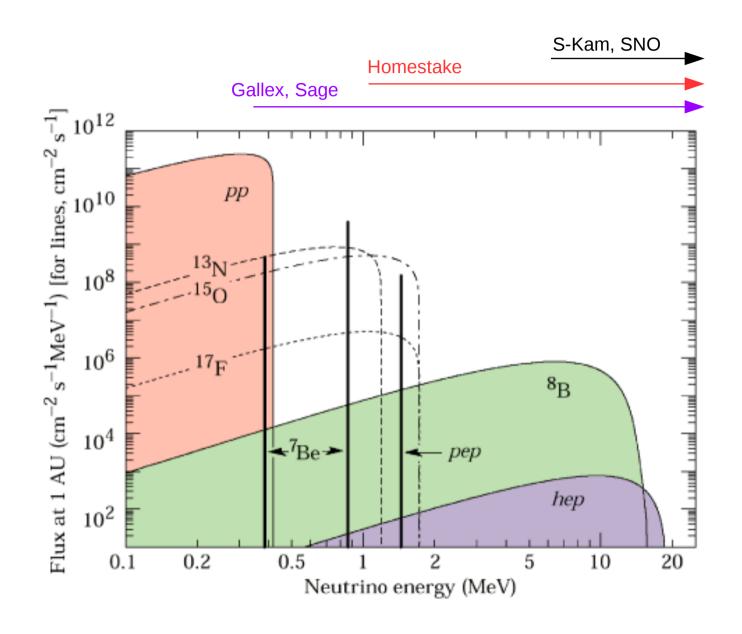
- The slowest reaction $^{14}N(p,\gamma)^{15}O$ of the CNO cycle fixes:
 - the energy production rate $\epsilon \propto Q_{CNO}/ au_{CNO}$
 - the cycle duration
 - $\tau_{CNO} = \tau_p(^{12}C) + \tau_p(^{13}C) + \tau_p(^{14}N) + \tau_p(^{15}N)$ $\cong \tau_p(^{14}N)$
 - For ρ_c = 100 g.cm⁻³, X_H = 0.5 and T_c = 60 MK τ (12C) = 6.1×10⁹ yr, τ (13C) = 1.1×10⁹ yr, τ (14N) = 2.1×10¹² yr, τ (15N) = 1.0×10⁸ yr



- The $^{14}N(p,\gamma)^{15}O$ reaction has been measured directly by the LUNA collaboration (see lecture 4)
 - → impact on the age of Globular Clusters (turn-off age; see lecture 1)


(Imbriani+, A&A, 2013)

CNO cycle in AGB stars is the main source of ¹³C and ¹⁴N in the Universe


The CNO cycle (3)

- CNO cycle has a steeper temperature dependence than pp chain (see lecture 3)
- pp1 chain dominates in low mass stars ($\sim M_{\odot}$), while CNO cycles dominates for higher mass stars (few M_{\odot})
- Above T = 20 MK, CNO1 faster than pp1
 - \rightarrow change in stellar structure at 1.15 M $_{\odot}$, e.g. different radiative / convective zones

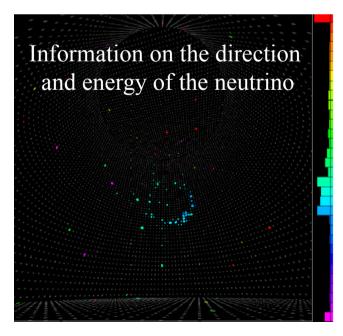
The solar neutrino spectrum

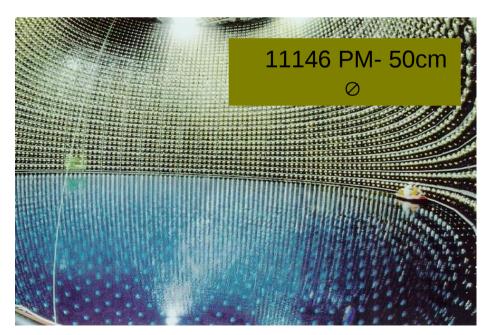
The detection of solar neutrinos (1)

The pioneering experiment (1964- 2001) of R. Davis (Nobel price in 2002) and J. Bahcall

• 680 tons of perchloroethylene (C₂Cl₄) in the Homestake gold mine (1.5 km deep)

•
$$v_e + {}^{37}CI \rightarrow {}^{37}Ar (T_{1/2} = 35 \text{ days}) + e^{-}$$


- Production of ³⁷Ar: ~0.5 atom per day
- Radiochemical separation: extraction of the ³⁷Ar nuclei every 100 days, counting (EC → Auger electrons) in a gas detector
- Result: 2.56 ± 0.16 (stat) ± 0.16 (sys) SNU
 → 30 % of the expected signal
- Solar model (Bahcall 2004): 8.5 ± 0.18 SNU



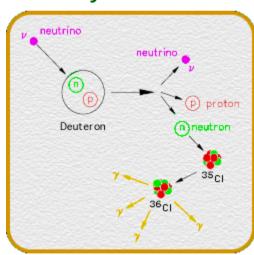
1 SNU (Solor Neutrino Unit) = 10⁻³⁶ capture per second and target atom

The detection of solar neutrinos (2)

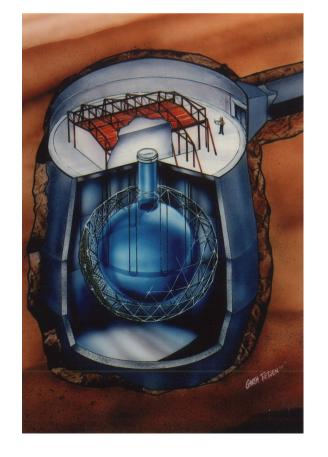
- Radiochemical experiments with gallium: SAGE and GALLEX
 - Reaction: $v_e^{-71}Ga \rightarrow {}^{71}Ge (T_{1/2} = 11.4 d) + e^{-1} (threshold E_v = 0.23 MeV)$
 - → sensitive to pp neutrinos
 - Results: 40 % of the expected signal
- Real-time detection of (mostly) e- neutrinos: Kamiokande (700 tons of water, 1983 1996), Super-Kamiokande (50 kt, 1996 –)
 - Reaction: v_e + e⁻ → v_e + e⁻ (emission of Cherenkov light)
 - Results: 40 % of the expected signal

Solution to the solar neutrino problem

Possible origin of the deficit


- Problem with the standard solar model? (3% of error on $T_c \rightarrow$ a factor of 2 in N_v)
- Problem with the nuclear data? 7 Be(p, γ) 8 B cross-section
- New physics of neutrino \rightarrow oscillation $v_e \rightarrow v_{\mu}, v_{\tau}$?

SNO: Sudbury Neutrino Observatory


- 1100 tons of D₂O (99.9%)
- Sensitive to the three neutrino flavors

$$\rightarrow v_x + d \rightarrow p + n + v_x$$
 (neutral current)

(Bellerive+, NPB, 2016)

• Results: ϕ_{NC} = 5.21 ± 0.27 (stat) ± 0.39 (sys) SNU in agreement with ϕ_{SSM} = 5.05 $^{+1.01}_{-0.81}$ SNU

4.2 Quiescent helium burning

- Where does it take place?
 - Core of horizontal branch stars (100 400 MK)
 - Burning shell in AGB stars (45 100 MK)
- Main nucleosynthesis products $^4{\rm He}$ transformed in $^{12}{\rm C}$ and $^{16}{\rm O}$ for stars of more than $\sim 0.5~{\rm M}_{\odot}$
- How does it work?
 Mainly three reactions:

•
$$\alpha + \alpha + \alpha \to {}^{12}C$$
 $Q = 7.3 \text{ MeV}$

•
$$^{12}\text{C}(\alpha,\gamma)^{16}\text{O}$$
 $Q = 7.2 \text{ MeV}$

•
$$^{16}\text{O}(\alpha,\gamma)^{20}\text{Ne}$$
 $Q = 4.7 \text{ MeV}$

- Triple alpha process: Öpik (1951), Salpeter (1952)
- The "Hoyle" state in ¹²C: Hoyle (1953)

Fred Hoyle (1915 – 2001)

The triple alpha process

How are synthesized elements heavier than 4 He, given that there are no stable isotopes for mass A = 5 (p+ α) and A = 8 (α + α)?

[-92]

E'=379 keV

4He

3030

[7367]

8Be

- Fusion of 3α in ^{12}C in two steps
 - $\alpha + \alpha \leftrightarrow {}^{8}\text{Be}$ Q = -92 keV(${}^{8}\text{Be}$ is unstable $\tau = 9.7 \times 10^{-17} \text{ s}$)
 - α + ⁸Be \rightarrow ¹²C*

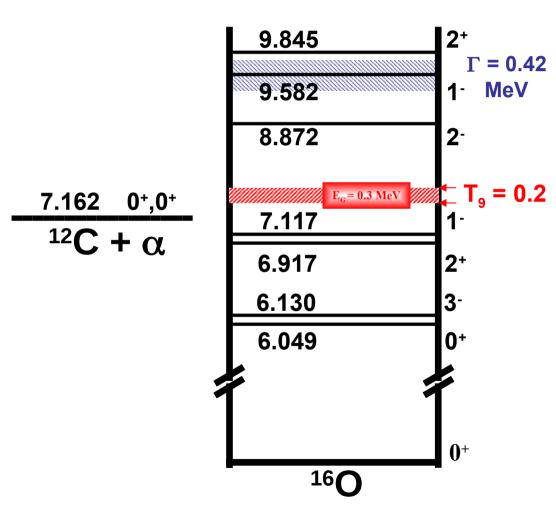
• In view of the significant abundance of 12 C in the Universe (!), Hoyle (1953) predicted (i) that the reaction α + 8 Be \rightarrow 12 C* is resonant and, (ii) the existence of a J $^{\pi}$ = 0+ state at 7.7 MeV in 12 C

• Experimental verification in 1953 and 1957

12C

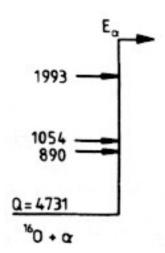
9641

7654


4439

α

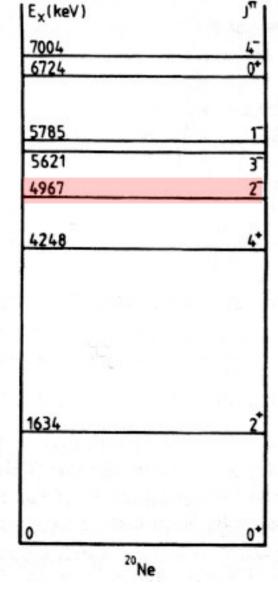
The $^{12}C(\alpha,\gamma)^{16}O$ reaction


Slow and crucial reaction → Holy Grail in nuclear astrophysics

- The rate of this reaction determines the ¹²C/¹⁶O ratio at the end of the helium burning phase, and thus the subsequent burning stages in massive stars
- 12C/16O influences the nature of the remnant (neutron star? Black hole?) left after a core-collapse supernova
- A difficult case: contribution from a broad state, two sub-threshold resonances and the direct capture process.
- Cross-section at 300 keV
 - → $\sigma \approx 10^{-17}$ b! (can't be measured, less than 1 event per year)

The ¹⁶O(α , γ)²⁰Ne reaction

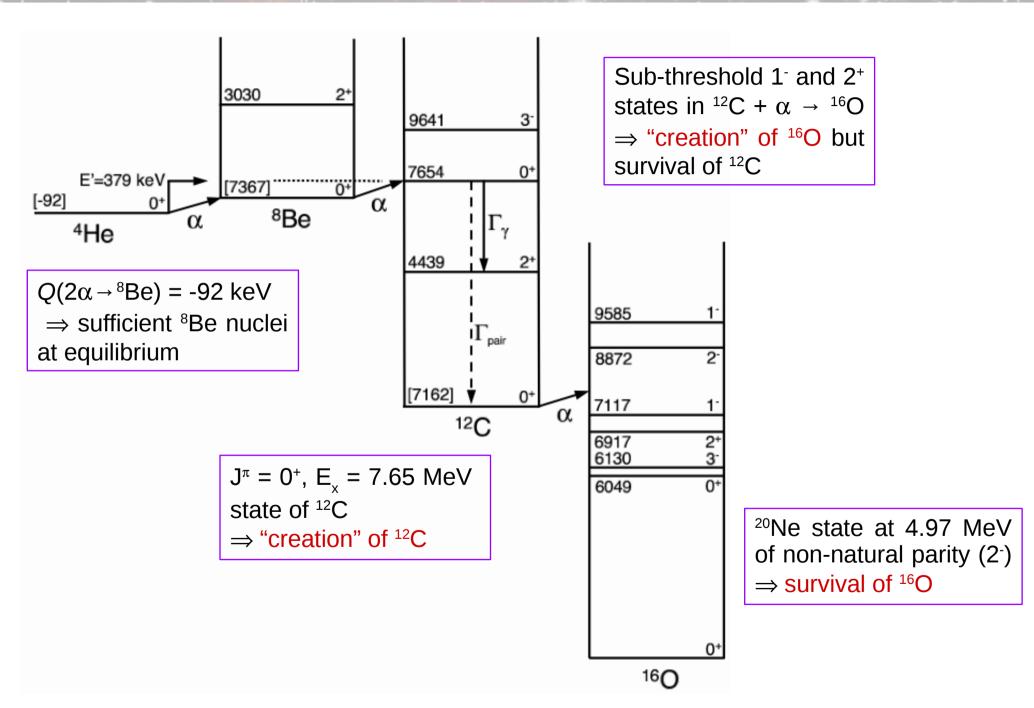
• Very slow reaction because no resonant state in the energy range of interest 5.0 MeV < E $_{\times}$ (20 Ne) < 5.2 MeV (the J $^{\pi}$ = 2 $^{-}$ state at E $_{\times}$ = 4967 keV being of non-natural parity)



 $T(10^8 K)$

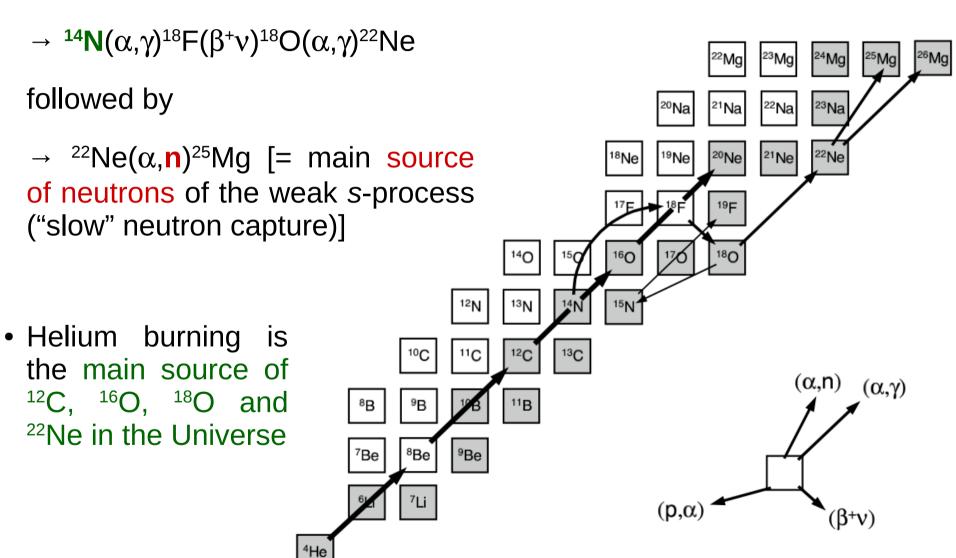
10 ⁻⁵

10

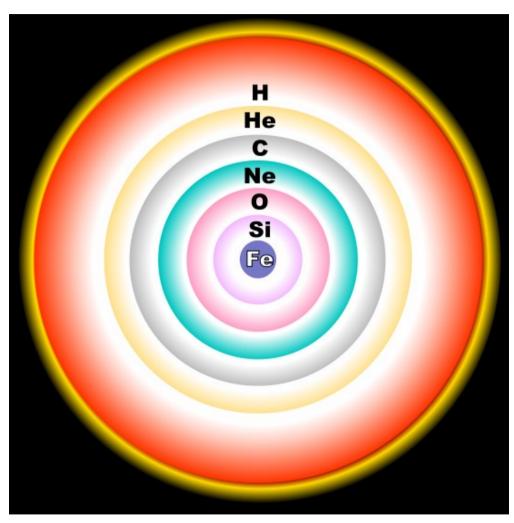


• Reaction rate << rate of $^{12}\text{C}(\alpha,\gamma)^{16}\text{O}$ for T<0.3 GK

⇒ end of the helium burning phase in stellar cores


 \Rightarrow survival of ¹⁶O

How insignificant we are!



Other reactions

• ¹⁴N is the main "ash" from the CNO cycle, and accounts for 1-2% of the mass of the fusion core at the end of H burning (pop I stars)

4.3 Advanced nuclear burning phases

Schematic diagram of the "onion-skin" structure of a pre-supernova

Chandra X-ray observatory image of the SN remnant Cassiopeia A

Carbon burning

- When?
 - He exhausted in the stellar core \rightarrow mainly ¹²C and ¹⁶O ashes \rightarrow gravitational contraction \rightarrow increase of temperature
 - $T_c \sim (5-9) \times 10^8 \text{ K and } \rho > 2 \times 10^5 \text{ g cm}^{-3} \text{ for M} \ge 8 \text{ M}_{\odot}$
- Major reaction sequences

12
C + 12 C → 20 Ne + α ($Q = 4.62$ MeV) dominates by far
→ 23 Na + p ($Q = 2.24$ MeV)
→ 23 Mg + n ($Q = -2.62$ MeV)
+ several seconday reactions..

- Composition at the end of core carbon burning
 - Mainly ²⁰Ne with some ^{21,22}Ne, ²³Na, ^{24,25,26}Mg and ^{26,27}Al
 - ¹6O not burning yet.... → amount comparable with ²0Ne

Neon burning

- When?
 - After carbon burning \rightarrow mainly ²⁰Ne ashes \rightarrow the core further contracts \rightarrow increase of temperature
 - $T_c \sim (1-2) \times 10^9$ K and $\rho \sim 10^6$ g cm⁻³ for M ≥ 11 M_{\odot}
- Major reaction sequences

Temperatures are high enough to initiate photodisintegration processes

$$\gamma$$
 + 20 Ne \rightarrow 16 O + α (Q = -4.73 MeV) Equilibrium establishes

followed by e.g. the 20 Ne $(\alpha,\gamma)^{24}$ Mg $(\alpha,\gamma)^{28}$ Si sequence

- Composition at the end of core neon burning
 - Mainly ¹⁶O with some ²⁴Mg and ²⁸Si

Oxygen burning

- When?
 - After neon burning the core further contracts
 - $T_c \sim (2-3) \times 10^9 \text{ K} \text{ and } \rho \sim 3 \cdot 10^6 \text{ g cm}^{-3} \text{ for M} \ge 11 \text{ M}_{\odot}$
- Major reaction sequences

+ recapture of n, p, d and α -particles

- Composition at the end of oxygen burning
 - The most abundant nuclides are ²⁸Si and ³²S

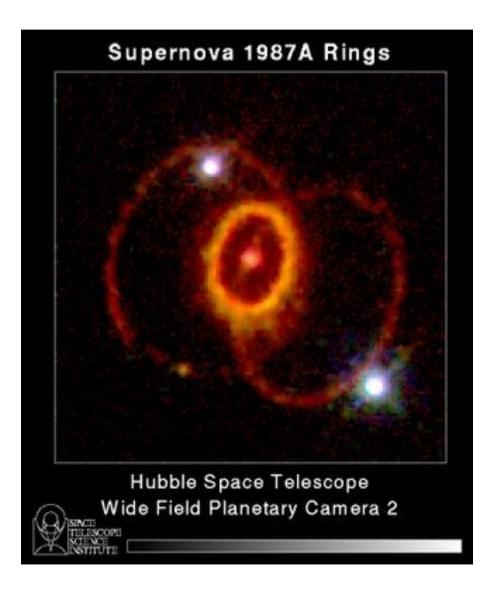
Silicon burning

- When?
 - After oxygen burning the core further contracts and the temperature incresases
 - $T_c \sim (2.8 4.1) \times 10^9$ K and $\rho \sim 3 \cdot 10^7$ g cm⁻³ for M ≥ 11 M_☉
- Photodisintegration
 - Starts with ²⁸Si: ²⁸Si(γ , α)²⁴Mg(γ , α)²⁰Ne(γ , α)...
 - Photodisintegration rearrangement: destruction of less tightly bound species and capture of released n, p, α -particles to synthesize more tightly bound species
- Nuclear Statistical Equilibrium (NSE) is achieved for many reactions
 - NSE = both photodisintegration and capture rates are fast

$$\boxed{\gamma + (Z, N) \rightleftharpoons p + (Z - 1, N)} \quad \boxed{\gamma + (Z, N) \rightleftharpoons n + (Z, N - 1)} \quad \boxed{\gamma + (Z, N) \rightleftharpoons \alpha + (Z - 2, N - 2)}$$

- Equilibrium drives towards $A = 56 \rightarrow \text{most stable nuclide (higher binding energy)}$
- Synthesis of nuclei from Si to Zn ("iron peak" elements Ti to Zn)
- Composition at the end of silicon burning: ⁵⁶Fe → formation of an iron core

Summary

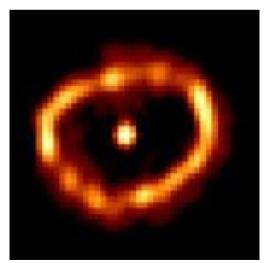

Stellar mass (M.)	Stage reached		
< 0.08	no thermonuclear fusion		
0.1 -0.5	H burning		
0.5 - 8	He burning		
8 - 11	C burning		
> 11	all stages		

Evolution stages of a 25 ${\rm M}_{\odot}$ star

Stage reached	Timescale	T _{core} (10 ⁹ K)	Density (g cm ⁻³)	
H burning	7x10 ⁶ y	0.06	5	
He burning	5x10 ⁵ y	0.23	$7x10^{2}$	
C/O burning	600 y / 6 months	0.93 - 2.3	$2x10^5 - 1x10^7$	
Si melting	1 d	4.1	3x10 ⁷	
Explosive burning	0.1 - 1 s	1.2 - 7	varies	

4.4 Explosive nucleosynthesis

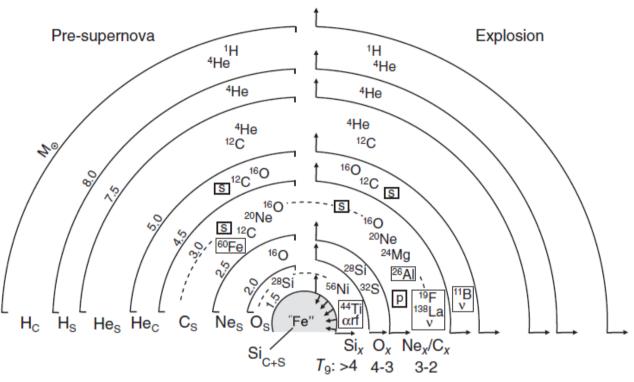
Massive stars



Binary systems

Type la supernova

G299 (Chandra X-ray observatory)

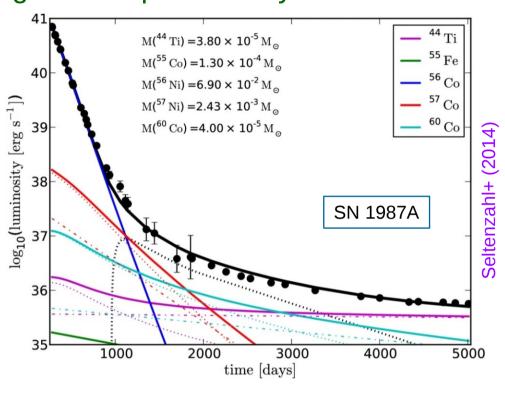


Classical nova

Nova Cygni 1992 (HST)

Core collapse supernova (1)

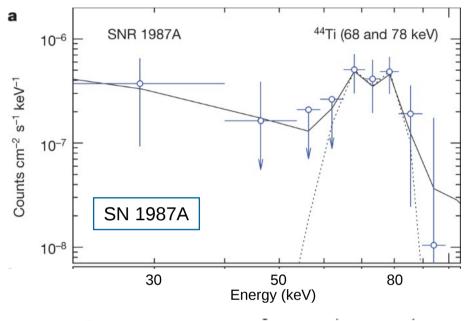
"Onion shell" structure of massive stars

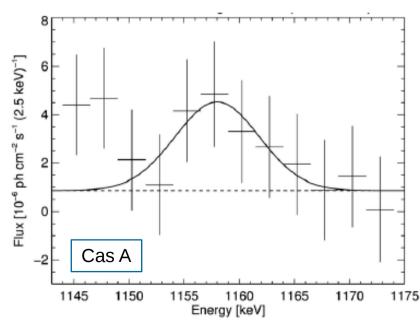

Explosion:

- Core in NSE, grows in mass until \sim 1.4 M_{\odot} , electron degeneracy pressure unable to counteract gravity...
- Collapse starts, enhanced by photodisintegration (e.g. γ + $^{56}Fe \rightarrow 13$ $^{4}He + 4n$) and electron capture (e⁻ + (Z,N) $\rightarrow \nu_e$ + (Z-1,N+1))
- When $\rho \sim 10^{14}$ g/cm³ nuclei feel short-range nuclear force \rightarrow inner part of core rebounds \rightarrow outward moving shock

Explosive nucleosynthesis: induced by neutrinos and outward moving shock (mainly in Si, O and Ne/C layers)

Core collapse supernova (2)

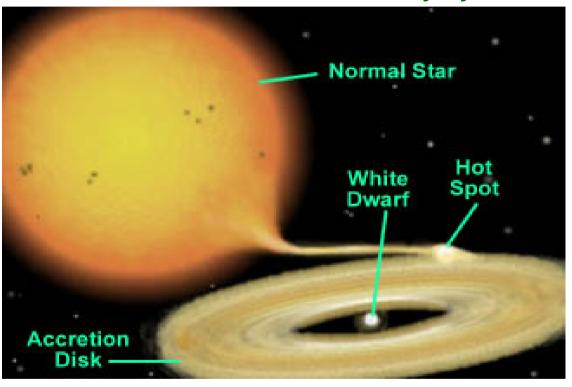

Light curve powered by radioactive decay



56
Ni → 56 Co → 56 Fe (stable)
(T_{1/2} = 6.1 d) (T_{1/2} = 77.3 d)

44
Ti → 44 Sc → 44 Ca (stable)
(T_{1/2} = 60 yr) (T_{1/2} = 3.97 h)

⁴⁴Ti observations from SN remants

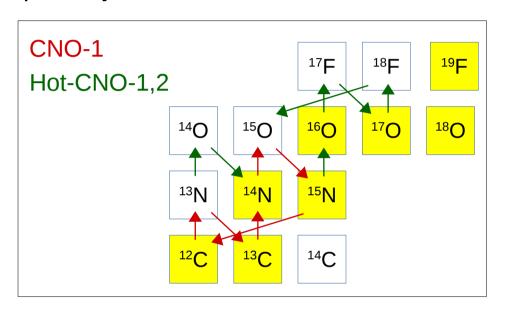


Classical novae (1)


Sudden increase in star's luminosity ($L \sim 10^4 - 10^6 L_i$, and $t \sim 1h - 1d$)

Final evolution of a close binary system

	novae	ccSN
M_{ej} (M_{\odot})	~ 10 ⁻⁵	~ 10
f (yr ⁻¹ galaxy ⁻¹)	~ 30	~ 10 ⁻²
L (L _o)	~ 10 ⁵	~ 1011
Nucleosynthesis	¹³ C, ¹⁵ N, ¹⁷ O	~ all


- H-rich material transfer from normal star to white dwarf (WD)
- T and ρ increase at surface of WD
- Start and thermonuclear runaway ($T \approx 50 300 \text{ MK}$)
 - → cataclysmic explosion
- Ejection of part of the accreted material

Classical novae (2)

Shell ejection

The energy release from the β^+ -decays (13 N, 14 O, 15 O, 17 F) throughout the envelope helps to eject the material from the WD

$$T_{1/2}(^{13}N) = 9.965 \text{ min}$$

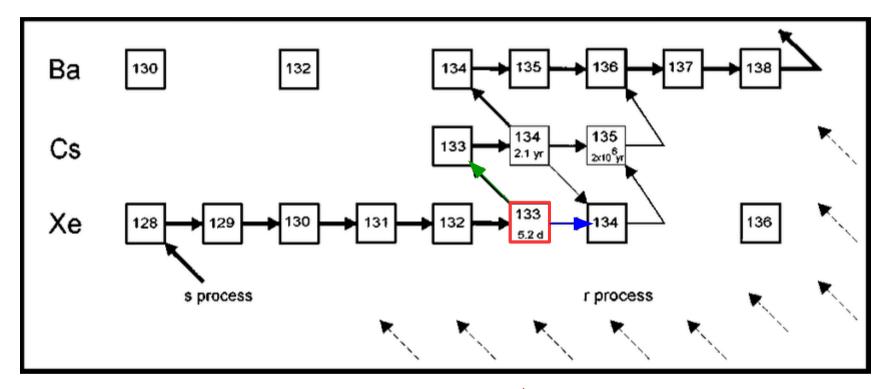
 $T_{1/2}(^{15}O) = 122.24 \text{ s}$
 $T_{1/2}(^{17}F) = 64.49 \text{ s}$
 $T_{1/2}(^{18}F) = 109.77 \text{ min}$


End-point of nucleosynthesis: $A \sim 40$ (Ca)

- $T_{peak} \sim 300 400 \text{ MK}$
- (p,γ) reactions on the proton-rich side
- Coulomb barrier too high to overcome for $A \ge 40$

Nucleosynthesis of γ -ray emitters

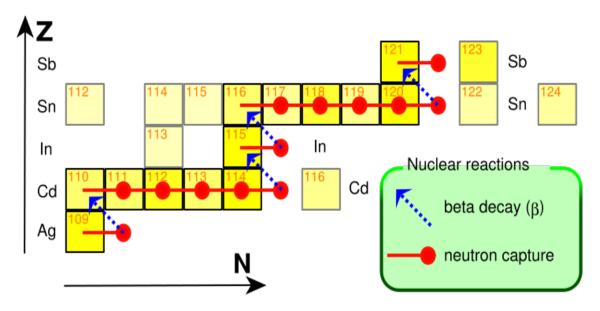
- ¹⁸F (T_{1/2}=110 min); 511 keV
- ²²Na (T_{1/2}=2.6 yr); 1275 keV
- ²⁶Al (T_{1/2}=0.7 Myr); 1809 keV


4.5 Nucleosynthesis beyond iron

Elements heavier than iron can't be synthesized by fusion reactions

Neutron capture reactions

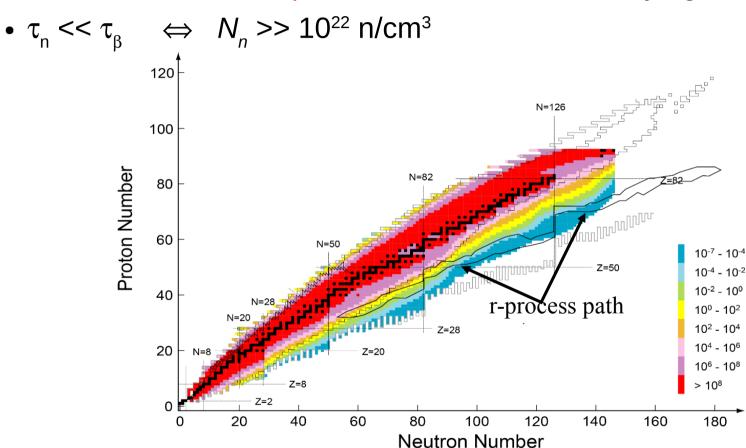
- Radiative neutron captures $[(n,\gamma)]$ reactions in competition with β^- decay
- Processus starts with Fe seeds



- Mean lifetime for neutron capture $\tau_n=\frac{1}{N_n\left<\sigma v\right>}$ to be compared to β -decay lifetime $\tau_{_{\! B}}$ (from seconds to years)
- If $\tau_n > \tau_\beta \to \text{unstable nuclide decays}$ if $\tau_n < \tau_\beta \to \text{neutron capture}$

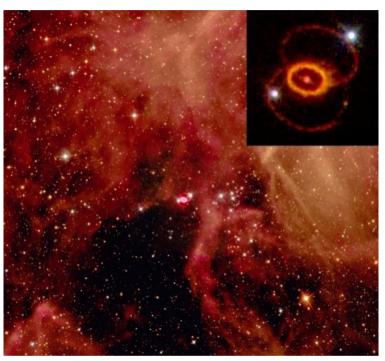
s-process: "slow" r-process: "rapid"

s-process


- Slow neutron capture process
 - Unstable nucleus decays before capturing another neutron
 - $\tau_n >> \tau_\beta \quad \Leftrightarrow \quad N_n \sim 10^8 \text{ n/cm}^3$

- Nucleosynthesis: path along the valley of β stability up to ²⁰⁹Bi (long time scale ~ 10⁴ yr)
- Neutron source: ${}^{13}C(\alpha,n){}^{16}O$ and/or ${}^{22}Ne(\alpha,n){}^{25}Mg$
- Quiescent scenarios: AGB stars; main s-process; "Ba/Pb" peaks
 - Massive stars; weak s-process; "Sr-Y" peak

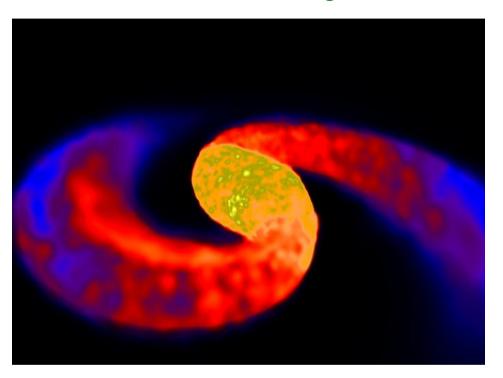
r-process


- Rapid neutron capture process
 - Unstable nucleus captures neutron before decaying

- Nucleosynthesis: path far from the valley of β stability (short time scale ~ seconds)
- Explosive scenarios: but where?

Astrophysical site for *r*-process?

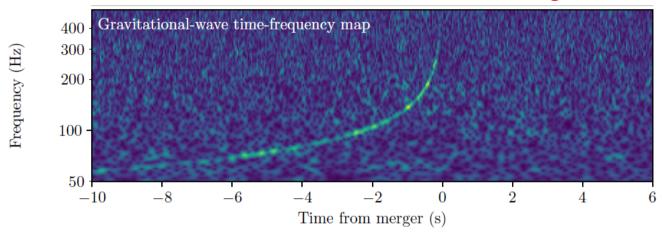
Core-collapse Supernovae?



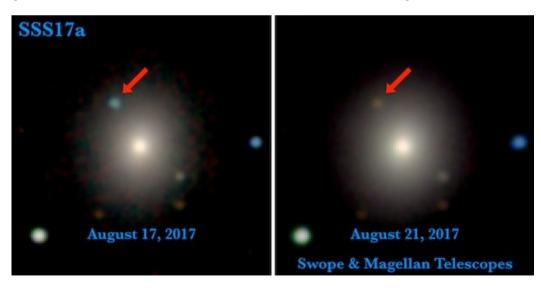
Supernova SN1987A

- Dynamical ejecta of prompt explosions (of O-Ne-Mg cores)
- Neutrino-driven wind from proto-neutron stars

• ...


Neutron star merger?

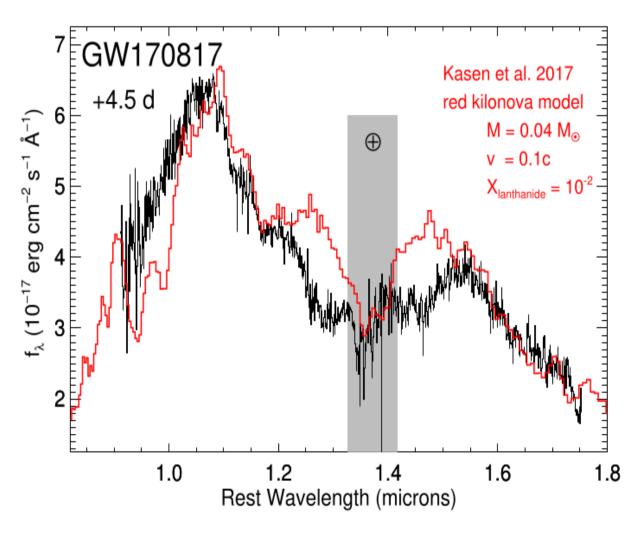
- Mergers are expected to eject \sim 0.01 $\rm M_{\odot}$ of very neutron-rich material
- Sources of gravitational waves
- Electromagnetic emission from radioactive decay of r-process nuclei → kilonova


Neutron star merger GW170817

Gravitational waves from neutron star merger detected by LIGO/VIRGO

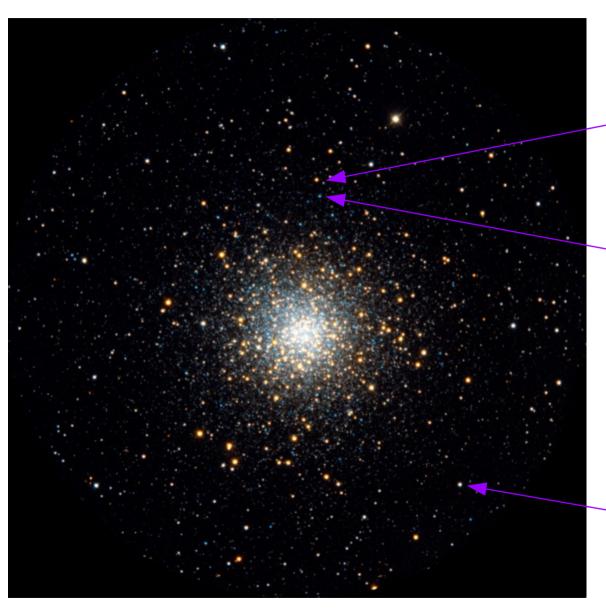
Two neutron stars of $0.86~\mathrm{M}_{\odot}$ and $2.26~\mathrm{M}_{\odot}$

Optical transient source counterpart SSS17a (Swope Supernova Survey)



Counterpart in galaxy NGC4993 at ~ 40 Mpc

- First day
 - → blue and bright
- Four days later
 - → red and fainter


Near-infrared emission

Comparison of the measured near-infrared spectrum counterpart of the binary neutron star merger GW170817 with a "red" kilonova model

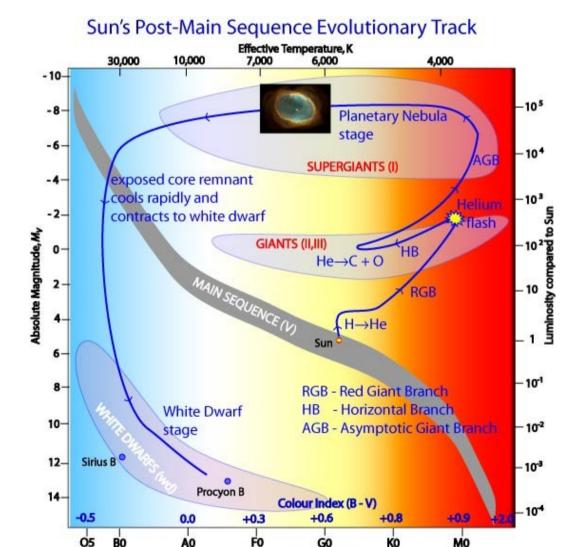
- The two bumps in the near infrared spectrum is a signature of very heavy elements
- Effect of opacity induced by lanthanide elements
- Lanthanides (~ 1%)
 - → *r*-process

5. Back to the HR diagram

Red giant star: H → He shell burning via the CNO cycle

Horizontal branch star: He → C, O core burning + H → He shell burning

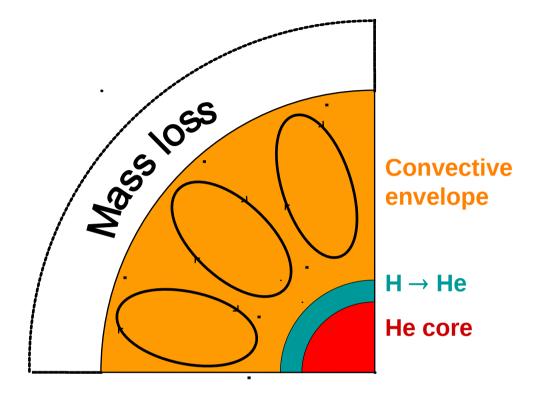
Main sequence star: H → He core burning via the pp chains


Globular cluster M10

Red giant stars (1)

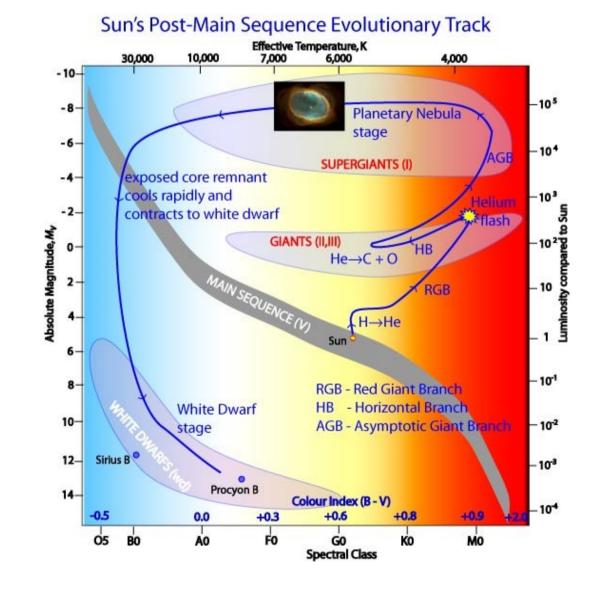
- Stars of mass $0.5 10 \text{ M}_{\odot}$ (if $\text{M} \ge 10 \text{ M}_{\odot} \rightarrow \text{red supergiants}$)
- Inert He core (no energy source) surrounded by a H burning shell
- From the Virial theorem

$$E=K+\Omega=\Omega/2=-K$$
 If E ~ cst, Ω and K also


- \rightarrow contraction of the core must be accompagnied by expansion of the envelope (Ω ~ cte) up to 50 R $_{\odot}$ (~ Mercury)
- → core heating must result in cooling of the envelope $(K \sim cte) \rightarrow T_{eff}$ decreases
- $\rightarrow L = 4\pi R^2 \sigma_s T_{eff}^4$ increases

Spectral Class

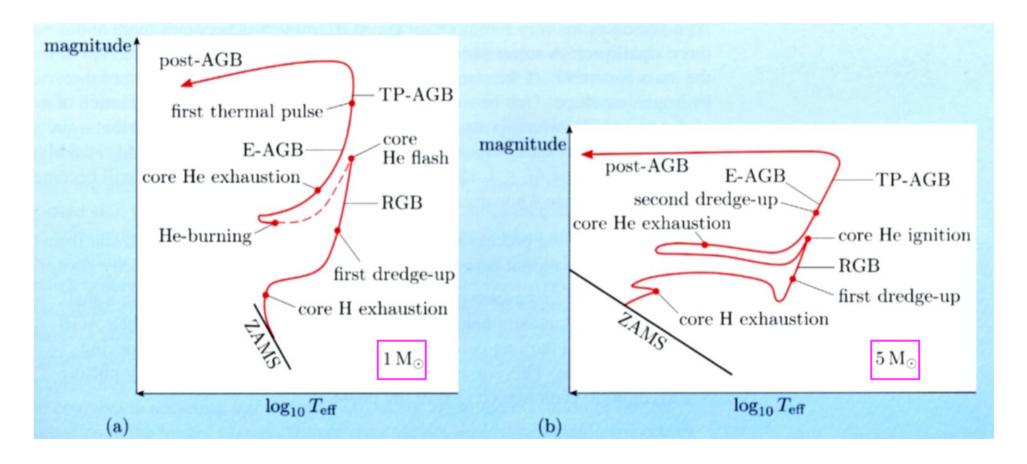
Red giant stars (2)



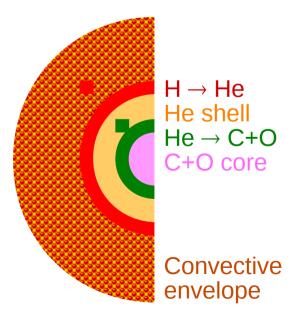
- Decrease of $T_{\rm eff}$ \to recombination in stellar atmosphere \to increase of opacity \to radiative transport less efficient \to convection settles in envelope
- Ashes of H-shell burning 13 C, 14 N are transported to the surface
 - → first "dredge-up"
 - → high ¹³C/¹²C and ¹⁴N/¹²C isotopic ratios observed in absorption spectra of red giant stars

Stars of the horizontal branch (1)

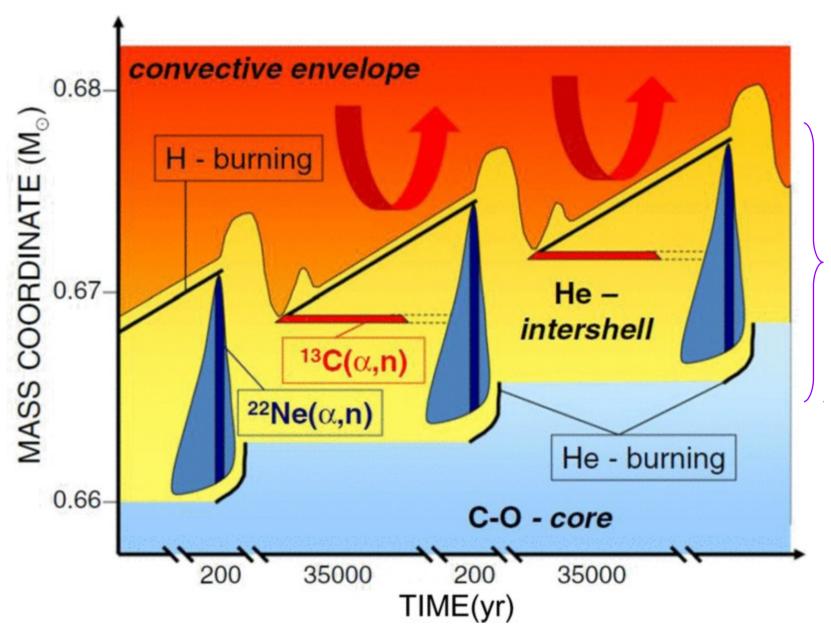
Ignition of the He core at $T_c \sim 100 \text{ MK} \rightarrow \text{core contraction stops}$


- In low-mass stars (0.7 2 M_☉) the electron gas in the core is partially degenerated → helium flash
 - \rightarrow release during a few seconds of 10¹⁰ L_o in L_{nuc}! but invisible from the surface
 - → expansion and cooling of the core result in the contraction and heating of the envelope

Stars of the horizontal branch (2)


Ignition of the He core at $T_c \sim 100 \text{ MK} \rightarrow \text{core contraction stops}$

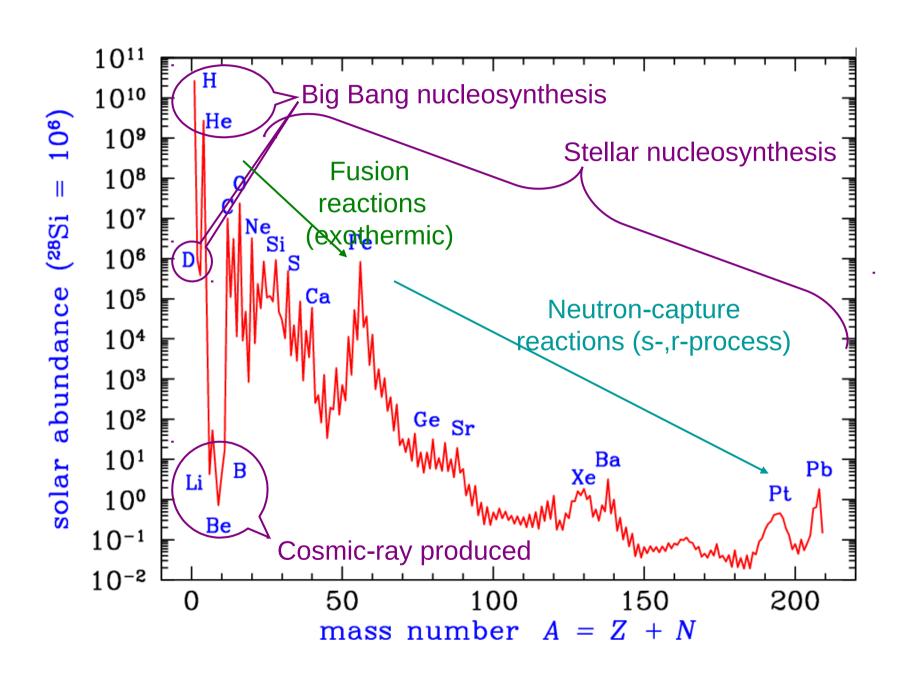
• Quiet ignition of the He core (convective) for intermediate-mass stars $(2-10~{\rm M}_{\odot})$



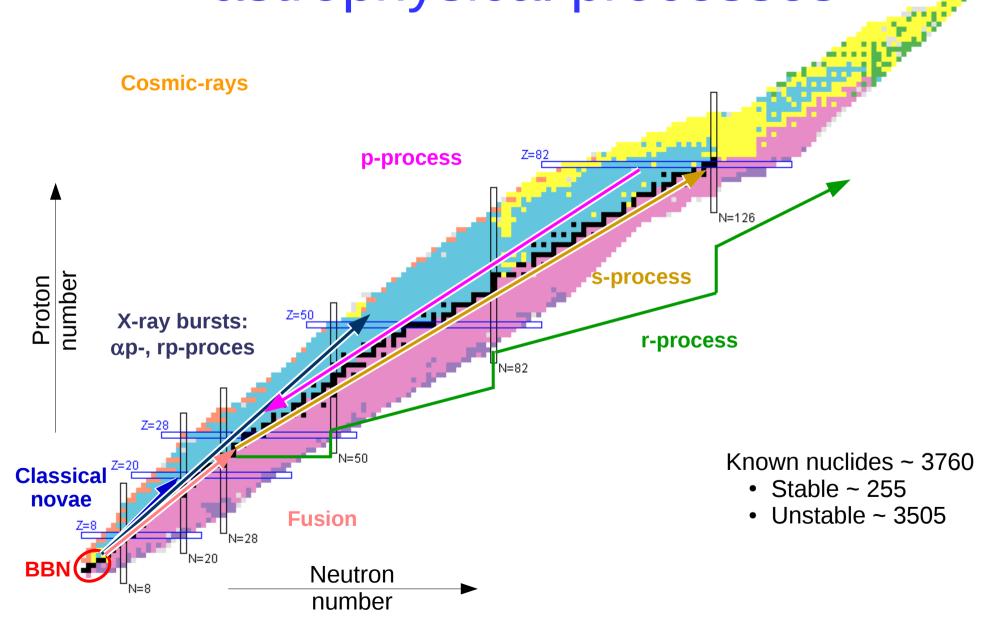
AGB stars

- Asymptotic Giant Branch (AGB); E-AGB = early AGB
 - Inert C/O core (no energy source) left after He core burning
 - He burning shell + H burning shell
 - Convective envelope → second "dredge-up" (H-burning ashes are brought to the surface by convection)
- As for red giant phase, radius is increasing.... up to 200 R_{\odot} (~ Earth)!

TP-AGB stars (Thermal Pulses)


- Mixing of ashes from H and He burning
- Site of the main sprocess

Evolution of a solar-type star


Time until the next stage (year)	<i>T_c</i> (MK)	<i>T</i> _{eff} (K)	$ ho_{C}$ (g cm ⁻³)	Radius (R_{\odot})	Stellar stage
1010	15	6000	10^2	1	Main sequence
108	50	4000	104	3	Subgiant
105	100	4000	105	50	Helium flash
5×10 ⁷	200	5000	104	10	Horizontal branch
104	250	4000	105	200	AGB
105	300	100 000	107	0.01	Compact star enriched in C, O (planetary nebula)
-	100	50 000	107	0.01	White dwarf

Summary

Abundance curve and processes

Nuclear landscape and astrophysical processes

Bibliography

- Nuclear Physics of Stars Christian Iliadis, Wiley-VCH Verlag GmbH & Co. KGaA, 2015 ISBN 978-3-527-33648-7
- An Introduction to the Theory of Stellar Structure and Evolution (Virial theorem, p26, p32, p126)
 Dina Prialnik, Cambridge University Press ISBN 978-0-521-65065-6