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This document aims to introduce and illustrate the essential elements at Master’s level for
performing statistical inference. The process of inference is understood here as evaluating the
relevance of a model with respect to a set of data. A concise bibliography can be found at
the end of this document to start exploring the statistical approaches employed in high-energy
(astro)physics and cosmology. The content of this document is largely inspired by the chapters
“Probability” [1] and “Statistics” [2] of the Particle Data Group review, whose reading is strongly
encouraged. The same applies to the reference book Numerical Recipes [3], in particular chapters
14 “Statistical Description of Data” and 15 “Modeling of Data”. The whole book Numerical
Recipes can be considered an essential prerequisite for a thesis in our fields. The book provides
examples in C/C++, which serve as an excellent guide to understanding the analytic approaches.
The present document favours the use of Python libraries, which can be tested in the suggested
exercises.

1 Usual laws of probability: the ubiquity of the Gaussian

The Gaussian distribution is widely used (and sometimes overused) in physics. The classic
argument justifying its use is the central limit theorem, a proof of which exploits characteristic
functions. We consider the latter outside the scope of this document and restrict ourselves here
to the example of distributions used in counting experiments.

1.1 Counting experiment

Consider n cells, with a binary value (0 or 1), described by independent and identically dis-
tributed random variables. The value taken by each cell follows Bernoulli’s law: it takes the
value 1 with probability p and the value 0 with probability 1− p.

Let’s look at the sum of the values contained in these cells, described by the random variable X.
This variable X can take discrete values, k ∈ J0, nK. For X = k, k cells must have a value of 1,
with probability ∝ pk, and n−k cells must have a value of 0, with probability ∝ (1−p)n−k. We
need only take into account the number of possible arrangements to determine the normalisation

factor,

(
n

k

)
. The sum of the cell values thus follows a binomial distribution.

Binomial law: X ∼ B(n, p)

P(X = k) =

(
n

k

)
pk(1− p)n−k (1)

Mean: E(X) = np
Variance: Var(X) = np(1− p).

Note 1. The binomial distribution can be generalised to cases where the value taken by each
cell is not binary (e.g. dice rolls). This is known as a multinomial distribution.



1.2 When Bernoulli joins Poisson

The binomial distribution is of interest for a small number of cells (typically n < 100). Suppose
we are interested in a light source, emitting n photons per second, with n large, and that the
probability that we detect one of these photons is p, with p small. We work with a constant
value of λ ≡ np, which is the mathematical expectation of the binomial distribution. So in
practice, we assume that the mean value for the measurement remains constant in our thought
experiment. We can then rewrite the distribution function of the variable X as follows:

P(X = k) =
n!

(n− k)! k!

(
λ

n

)k (
1− λ

n

)n−k

=
n(n− 1) . . . (n− k + 1)

nk

(
1− λ

n

)−k

× λk

k!

(
1− λ

n

)n

−−−−−−−−−→
n≫1, λ=const.

λk

k!
exp(−λ) (2)

Thus, when the maximum number of achievable counts n is large, the binomial distribution of
parameters n and p tends towards a Poisson distribution of parameter λ = np.

Poisson law: X ∼ P(λ)

P(X = k) =
λke−λ

k!
(3)

Mean: E(X) = λ
Variance: Var(X) = λ

Note 2. The sum of independent Poisson variables with parameters λi follows a Poisson dis-
tribution with parameter

∑
i λi (stability under summation).

1.3 When Poisson joins Gauss

Let’s now assume that the average number of counts measured per second, λ, is large (typically
λ > 100) and let’s look at small variations around this average value, of relative amplitude
δ ≡ k/λ − 1. Using Stirling’s formula, k! ≈

√
2πk kk exp(−k), we can rewrite the Poisson

distribution function as follows:
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P(X = k) =
1√
2πk

(
λ

k

)k

exp(k − λ)

=
1√
2πλ

(1 + δ)−k− 1
2 exp(λδ)

=
1√
2πλ

exp

(
−
(
λ+ λδ +

1

2

)
ln(1 + δ) + λδ

)
=

1√
2πλ

exp

(
−λδ2

2
− δ

2
+

δ2

4
+O(λδ3)

)
−−−−−−−→
λδ≫1, δ≪1

1√
2πλ

exp

(
−(k − λ)2

2λ

)
(4)

Thus, when the average number of counts measured is large, the distribution around this average
follows a normal distribution, also known as a Gaussian distribution, with average µ = λ and
variance σ2 = λ.1

Gauss’s law: X ∼ N (µ, σ2)

P(X = x) =
1

σ
√
2π

exp

(
−(x− µ)2

2σ2

)
(5)

Mean: E(X) = µ
Variance: Var(X) = σ2

Figure 1 compares the binomial, Poissonian and Gaussian distributions expected in a counting
experiment. These distributions of the number of measured counts can be seen as discrete
probability distributions or as the histogram of the number of counts reconstructed by repeating
the measurement a large number of times. For a moderately large number of cells (n ≈ 100, top
left panel), the binomial distribution describing the number of counts can be distinguished from
the Poisson and Gauss distributions. If the maximum number of counts is very large (n ∼ 1000),
the number of counts is distributed according to a Poisson distribution, as illustrated by the
bottom left panel in figure 1. If, in addition, the average number of counts is large (µ ∼ 100),
the distribution around this average value follows a normal distribution with a variance equal
to its average. Given the peaked nature of Poissonian and Gaussian distributions, a typical
realisation of a counting experiment leading to the measurement of k > 10 is often assimilated
to the estimation of the counting rate as k ±

√
k, i.e. a Gaussian distribution centred on µ = k

and of standard deviation σ =
√
k.

1.4 Gaussian probability density

The probability laws in equations (1,3,5) apply to discretely distributed variables, k ∈ N. The
function

P : k → P(X = k) (6)

1The equality of the average and the variance might seem to conflict with usual dimensional analysis. Note
that λ is an integer here. So the mean, variance and standard deviation are dimensionless quantities. In the more
general case, one should make sure that the mean, µ, and the standard deviation, σ, are of the same dimension.
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Figure 1: Binomial (dotted blue), Poisson (dashed orange) and Gaussian (solid green) distribu-
tions for different values of the parameters n and p (cf. Eq. (1)).

.

is then called probability mass function (PMF). The PMF verifies
∑

k∈N P (k) = 1.

The Gaussian distribution is also defined for x ∈ R. The function

p : x → P(X = x) (7)

is then called probability density function (PDF). The PDF verifies
∫
x∈R p(x)dx = 1. The

properties of the Gaussian distribution of zero mean and unit standard deviation, known as the
standard normal distribution, are illustrated in figure 2.

The integral of the PDF up to x,

F : x → P(X ≤ x)

x →
∫ x

−∞
p(t)dt (8)

is called cumulative distribution function (CDF). The CDF varies between 0 and 1. Its comple-
mentary function, 1− F (x), is called survival function (SF):

S : x → P(X > x)

x →
∫ ∞

x
p(t)dt (9)
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Figure 2: Gauss distribution with zero mean and unit standard deviation. The PDF is here
normalised by a pre-factor σ

√
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The CDF and SF of the Gaussian distribution can be estimated using the tabulated function
erf, known as the Gaussian error function:

erf(x) =
2√
π

∫ x

0
e−t2dt. (10)

and its complementary function, erfc(x) = 1 − erf(x). Note in particular that the SF of the
Gaussian distribution is∫ ∞

x

1

σ
√
2π

exp

(
−(x′ − µ)2

2σ2

)
dx′ =

1√
π

∫ ∞

x−µ

σ
√
2

e−t2dt

=
1

2
erfc

(
x− µ

σ
√
2

)
(11)

Note 3. A numerical implementation of the usual PMF, PDF, CDF, SF is available in many
languages, for example in the stats library of scipy in Python2 and in the MathCore library
from ROOT in C/C++.3

2 Statistical inference: from Bayes to χ2 via likelihood

Let’s suppose we are dealing with a set of measured number of counts, yi = ki, as a function of
a relevant variable, xi. This could, for example, be a spectrum in high-energy (astro)physics,
i.e. a number of events as a function of a measured energy. Another example in the context
of NPAC’s laboratory work could be the calibration of the number of ADC (analog-to-digital
converter) counts from a detector as a function of the energy associated with nuclear lines.

How can we identify the most appropriate model f(x;θθθ) with parameters θθθ (e.g. for an affine
relationship f(xi;θθθ = {a, b}) = a + bxi) for representing the evolution of {yi} as a function of
{xi}?

2https://docs.scipy.org/doc/scipy/reference/stats.html
3https://root.cern/doc/master/group__Math.html
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2.1 The general case: Bayesian approach

The theory of probability built up since Laplace enables us to rigorously define the process of
inferring the parameters θθθ of a hypothesized model, H, from a set of data, D, and possibly from
prior information about the model, I. The degree of plausibility of H knowing D and I is given
by Bayes’ theorem.

Bayes’ theorem

P(H|D, I) =
P(D|H, I)P(H|I)

P(D|I) (12)

P(H|D, I): probability a posteriori, or posterior, describing the credible parameters of the
hypothesis H given prior information I and new data D;

P(D|H, I): likelihood, describing the probability of data occurrence for a model;

P(H|I): probability a priori, or prior, describing the initial degree of plausibility of the model
parameters, for example the range in which they can vary;

P(D|I): Bayesian evidence, this normalization factor is the integral of the numerator over the
entire parameter space, so that the posterior is a probability.

Note 4. Bayes’ theorem derives directly from the axioms of probability (or Kolmogorov’s
axioms). Indeed, note that for two non-disjoint sets of events A and B, P(B|A)P(A) = P(A ∩
B) = P(A|B)P(B). Thus, the intersection is obtained either by taking from A and then taking
from B knowing that we took from A (left-hand term), or by taking from B and then taking
from A knowing that we took from B (right-hand term).

By design, the Bayesian approach is perfectly adapted to refining a measurement using new data,
D1. The information acquired from previous measurements, D1, is encoded in the posterior
P(H|D1, I), which can be used as a prior to determine the posterior P(H|D2, D1, I). For a
sufficiently large number n of measurements, the choice of initial prior, P(H|I), most often
has a relatively small impact on the final posterior P(H|{Di}1≤i≤n, I). For a small number of
measurements, the choice of the initial prior legitimately raises questions. In the context of this
introductory document, we favour the use of simple priors such as flat priors (constant function
of the parameters).

The Bayesian approach is particularly well-suited to inferring the best parameters and their
credible intervals. We are most often interested in cases where the tested hypothesis is entirely
determined by a set of continuous parameters, θθθ. The prior is then characterized by a PDF
π(θθθ), the likelihood of the data d by the PDF p(d|θθθ), so we can write the posterior, or the PDF
of the parameters a posteriori, as

p(θθθ|d) = p(d|θθθ)π(θθθ)∫
p(d|θθθ′)π(θθθ′)dθθθ′ (13)

The likelihood function of the data is sometimes written as Ld(θθθ) ≡ p(d|θθθ). Leaving aside the
constant normalization term, we can then write the posterior as

p(θθθ|d) ∝ Ld(θθθ)π(θθθ) (14)
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Let’s suppose we are dealing with a set of parameters θθθ and we are only interested in the
parameter θ0 (e.g. invariant mass of two photons from a Higgs boson). The other parameters
{θi}i≥1 are called nuisance parameters. Their values are less interesting to us, but they can
still have an impact on the estimate of θ0 (the nuisance parameter could describe a systematic
error induced e.g. by the energy reconstruction bias of an electromagnetic calorimeter). In
other words, θ0 can be correlated with the {θi}i≥1. In the Bayesian approach, we determine the
marginal posterior of θ0 by marginalizing over the nuisance parameters, i.e. by integrating over
all the values that {θi}i≥1 can take. The marginalized posterior of the parameter of interest θ0
is then

p(θ0|d) ∝
∫

Ld(θ0, {θi}i≥1)π(θ0, {θi}i≥1)dθ1..dθn−1 (15)

For a given prior π(θθθ), e.g. a constant function of the parameters, and a given likelihood Ld(θθθ),
which we will make explicit in section 2.2, the estimation of the best parameters and associated
credible intervals derives directly from the posterior in equation (15). Several estimators derived
from the posterior can be chosen for the best parameters (e.g. mode also known as maximum
a posteriori, mean, median) and for the credible interval (symmetric or asymmetric interval
with respect to the best parameter, smallest interval containing a fraction of the integral of
the posterior, bounds defined by an equal value of the posterior). In the case of a Gaussian
posterior, the various estimators proposed in the literature yield consistent estimates. For the
purposes of this introductory document, we suggest using the median as the best parameter,
and the percentiles at 16% and 84% as the bounds of the credible interval at 68%, that is
Gaussian bounds within ± 1σ as illustrated in figure 2.

The complete posterior in equation (14) and the marginalized posteriors in equation (15) can be
determined analytically in some simple cases, e.g. for Gaussian likelihoods and priors. Analytical
solutions should always be preferred when the problem is solvable. However, in most cases, there
is no closed form for the posterior, so numerical sampling and integration methods are employed,
taking advantage of the Metropolis-Hastings algorithm for example. A particularly widespread
implementation of such algorithms employs Markov chain Monte Carlo (MCMC) methods. This
is the case, for example, of the sampler emcee4 [4], which we will use in the following numerical
exercises.

2.2 Likelihood: Bayesian and frequentist approaches

The likelihood Ld(θθθ) ≡ p(d|θθθ) describes the probability of occurrence of observed data d for a
set of fixed parameters θθθ. Let’s assume a set of statistically independent measurements d = {di},
where the PDF of di is described by pi(di|θθθ). The independence of the measurements means
that the likelihood can be written as Ld(θθθ) =

∏npts

i=1 pi(di|θθθ).

In a counting experiment, for example, we could measure {ki} as a function of a quantity {xi}
and model these counts by a function f such that the Poisson expectation of the number of
counts is given by λ = f(x;θθθ). The likelihood of the data is then described by the product of
Poisson distributions described in equation (3):

L{xi,ki}(θθθ) =

npts∏
i=1

(
f(xi;θθθ)

)ki
exp

(
− f(xi;θθθ)

)
ki!

(16)

4https://emcee.readthedocs.io
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For example, for the simple model where f is a constant function of parameter θθθ = µ, the
likelihood reads L{xi,ki}(µ) = µ

∑
ki exp(−nptsµ)/

∏
ki!. The likelihood is maximum for µ̂ =

ktot/npts (average number of counts), where ktot =
∑

ki is the total number of counts. For a
flat prior on µ, the value µ̂ is also the maximum a posteriori, relatively close to the mean and
median values of µ for ktot ≫ 1, as can be verified numerically.

The Poisson example above illustrates that in the most regular cases (unimodal likelihood, suf-
ficiently peaked and relatively symmetric), we can approximate the best parameter a posteriori
using the maximum likelihood, θ̂ = argmax Ld. This is the basis of the so-called frequentist
approach, which consists in determining the parameter values for which the model takes most
frequently the observed values. The range of acceptable parameters is then estimated using
confidence intervals, whose unambiguous definition is trickier than for Bayesian credible inter-
vals (see [2], in particular the methods of Feldman & Cousins and Rolke et al. for counting
experiments). For a sufficiently strong signal (i.e. when the determination of upper limits is
not necessary), the bounds of the 68% confidence interval [θ−; θ+] around the best parameter θ̂
are often estimated from the likelihood profile Ld(θ). The bounds at 1σ can thus be estimated
using the equation Ld(θ±) = Ld(θ̂) exp(−1/2), which corresponds to x = µ ± 1σ in equa-
tion (5). So the confidence interval in a one-dimensional parameter space is given by the equa-
tion lnLd(θ) ≥ lnLd(θ̂)− 1/2. Note that defining the confidence interval using ∆ lnLd = 1/2
is only valid for a 1D likelihood profile.5 For a multi-dimensional parameter space, we can
build a 1D profile for parameter θ0 by profiling the other parameters, i.e. by maximizing the
likelihood at θ0 fixed with respect to the other parameters. This is the approach used by the
minos method of the minimizer Minuit.6 This approach makes it possible to define asymmetric
error bars, θ̂ − θ− ̸= θ+ − θ̂, for general likelihood profiles.

In the case of symmetric error bars, we can also define the uncertainty σθ ≡ θ̂ − θ− = θ+ − θ̂
from a Gaussian property derived from the equation (5):

σ2
θ =

[
−∂2 lnLd

∂2θ

∣∣∣∣
θ̂

]−1

(17)

In the simplest cases, the best parameter and its confidence interval can be determined analyti-
cally. Returning to the constant modeling of a counting experiment discussed at the beginning of
this section 2.2, Lktot,npts(µ) ∝ µktot exp(−nµ), the zero of the first derivative gives a maximum
likelihood in µ̂ = ktot/npts and the calculation of the second derivative gives σµ = µ̂/

√
ktot.

The equation (17) is easily generalized to several dimensions using the second partial derivative
matrix, called the Hessian matrix, H, such that

Hij = − ∂2 lnLd

∂θi∂θj

∣∣∣∣
θ̂θθ

(18)

Note 5. The mathematical expectation of the Hessian matrix, i.e. its mean value over all
possible parameters, provides the Fisher information matrix, which plays an important role in
Bayesian analysis.

The inverse of the Hessian matrix, V = H−1, provides the covariance matrix of the parameters,
whose diagonal gives the squared uncertainties on the parameters, Vii = σ2

θi
, and the non-

diagonal terms of the covariance matrix, Vij = ρijσθiσθj for i ̸= j, determine the correlation

5Other values of ∆ lnLd must be used to identify the confidence region at 68% e.g. in 2D. To convince ourselves,
we can check that, for a 2D Gaussian of equal widths along x and y, the integral under the curve at 1σ of the
maximum is not 68% but only 39% (see e.g. https://corner.readthedocs.io/en/latest/pages/sigmas/).

6https://iminuit.readthedocs.io/en/stable/about.html
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between parameters, −1 ≤ ρij ≤ 1. Inversion of the Hessian matrix is the approach used by the
hesse method of the Minuit minimizer. The covariance between pairs of parameters is often
represented using the uncertainty ellipse (or standard error ellipse) shown in figure 3. In this
figure, the two parameters are anti-correlated, ρij < 0, in a non-maximum way, i.e. ρij > −1.

θ i

θ i

jσ

θj

iσ

jσ

iσ

^

θ j
^

ij iρ σ

innerσ

Figure 3: Ellipse of uncertainty for two parameters θi and θj . Adapted from [2].

2.3 Gaussian likelihood: frequentist approach and χ2 minimum

Let’s now assume, in a frequentist approach, that we have access to a set of independent
measurements {yi} with uncertainties {σi} as a function of {xi}. We are no longer limited
to the simple counting experiment, for which yi = ki and σi =

√
ki. Summarizing the values

to their best estimate and standard deviation, yi ± σi, implies that the likelihood terms are
approximated by Gaussian functions, i.e.

L{xi,yi,σi}(θθθ) =

npts∏
i=1

1

σi
√
2π

exp

(
−
(
yi − f(xi;θθθ)

)2
2σ2

i

)
(19)

Maximizing the likelihood is equivalent to minimizing deviance D = −2 lnL, i.e.

D =

npts∑
i=1

(
yi − f(xi;θθθ)

)2
σ2
i

+

npts∑
i=1

ln
(
2πσ2

i

)
(20)

In particular, we can define the saturated deviance, Dsat = −2 lnLsat, which corresponds to
an ideal model that perfectly reproduces the data, i.e. fsat(xi;θθθ) = yi. In the Gaussian equa-
tion (20), Dsat =

∑npts

i=1 ln
(
2πσ2

i

)
, which is independent of the model parameters θθθ by construc-

tion. The remaining term is used to define the quantity to be minimized, i.e. χ2 ≡ D −Dsat.

χ2 estimator or least-squares method

The χ2 is the sum of the squared differences between the model and the data, weighted by the
inverse of the squared uncertainties:

χ2(θθθ) =

npts∑
i=1

(
yi − f(xi;θθθ)

)2
σ2
i

(21)
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yi: value measured in xi;

f(xi;θθθ): value taken by the model in xi for a set of parameters θθθ;

σi: uncertainty of measurement yi.

Note 6. The χ2 is an adimensioned quantity. Weighting by the inverse of the squared uncer-
tainty follows naturally from the Gaussian likelihood. This is a good property: the larger the
uncertainty on a measurement, the less the impact of this term on the sum; the smaller the
uncertainty, the more important the associated measurement.

Maximum-likelihood estimation of the best parameters and their uncertainties is naturally ex-
tended to the least-squares method, which can be implemented using the LeastSquares class
of Minuit. Thus, we find as best parameters θ̂θθ = argminχ2 with uncertainties provided by
the diagonal terms of the covariance matrix σσσθ =

√
diag V. The covariance matrix is defined

using the Hessian matrix by
(
V−1

)
ij

= 1
2

∂χ2

∂θi∂θj

∣∣∣
θ̂θθ
(hesse method from Minuit). Asymmetric

error bars can also be reconstructed using the χ2 profile as a function of each parameter (minos
method from Minuit), which follows a parabola for a Gaussian likelihood profile. The 68%
confidence interval is then determined by the equation χ2(θ) ≤ χ2(θ̂) + 1, where the value of
∆χ2 = 1 corresponds to the interval at ±1σ for a 1D parameter space. This value of ∆χ2 is
derived from ∆ lnLd = 1/2, with χ2 = −2 lnL/Lsat.

Note 7. The least-squares method described in equation (21) is also the one followed by the
curve fit function in scipy.optimize, provided one specifies the σi uncertainties (parameter
sigma = sigma i and option absolute sigma = True). Without these inputs, which are not
the default ones (!), the parameter uncertainties returned by curve fit are meaningless in the
context described in this document.

In simple cases, an analytical solution can be obtained by derivation around the maximum
likelihood or minimum χ2. Let’s take the simplest case, the constant model f(x) = a. The
best value of a corresponds to the one for which the χ2 is minimum and therefore for which
∂χ2/∂a = 0 and ∂2χ2/∂a2 > 0. In our case,

∂χ2

∂a
=
∑
i

∂

∂a

[
(yi − a)2

σ2
i

]
= −2

∑
i

yi − a

σ2
i

(22)

∂2χ2

∂2a
= −2

∑
i

∂

∂a

[
yi − a

σ2
i

]
= 2

∑
i

1

σ2
i

> 0 (23)

According to Eq. (22), the best value of a corresponds to

â =

∑
i yi/σ

2
i∑

i 1/σ
2
i

(24)

The average value of a set of data with uncertainties is therefore an average weighted by the
inverse square of the uncertainties.
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The uncertainty σa on â can be determined from the second derivative, σa =
[
1
2
∂2χ2

∂2a

]−1/2
, i.e.

σa =
1√∑
i 1/σ

2
i

(25)

If the uncertainties are the same for all points (σi = σ), then according to the equation (25)
σa = σ√

npts
.

In practice, fitting algorithms minimize a χ2 either analytically (e.g. for polynomial models)
or numerically to find the best parameters and associated uncertainties. Note that parameters
must be initialized to relevant values to avoid getting stuck in a local minimum. Note also that
parameter uncertainty only makes sense if the model is a “good” model, which we will further
discuss in section 3.

Numerical exercises The exercises suggested here are based on the emceea and
iminuitb documentations. The two sets of tutorial can be used to develop Bayesian and
frequentist analyses, respectively.

Exercise 1. Bayesian analysis

• Create a jupyter notebook named Bayesian Analysis.

• Generate a set of test data, comprising 21 points equally spaced between x0 = 100
and x1 = 200, following a normal distribution centred on y = atrue + btruex with
atrue = 10 and btrue = 0.1 and standard deviation σy = 2.

• Define the functions log likelihood (Gaussian likelihood) and log prior

(constant prior) using the tutorial Fitting a model to data from emcee.

• Using the same tutorial (subsections Marginalization & uncertainty estimation and
Results), display a corner plot to determine the credible intervals of the fitted
parameters a and b.

Exercise 2. Frequentist analysis

• Create a jupyter notebook called Frequentist Analysis

• Generate a test data set as in exercise “Bayesian analysis”.

• Define a function least square using the tutorial Basics from iminuit.

• Using the same tutorial (subsections Quick start, Quick access to fit results and
Plotting / Drawing confidence regions), display a corner plot to determine the
confidence intervals of the fitted parameters a and b.

Exercise 3. Comparison of approaches

• Create a jupyter notebook named Comparative analysis.

• Create functions bayesian fit, frequentist fit and analytic fit returning the
best parameters of an affine model and associated uncertainties for a data set x i,

y i, sigma i. For the analytical approach, the use of pen and paper is strongly
encouraged before coding!
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• Generate n test data sets as before, for various a and b parameters, and compare the
best parameters obtained with the three approaches.

• Generate n test data sets as before, for fixed a and b parameters, and compare the
68% intervals obtained with the three approaches.

Exercise 4. Towards a good parametrisation of the model

• Repeat the previous exercises for data points equally spaced between x0 = −50 and
x1 = 50. Compare the covariance matrices.

• Comment on the difference with the results obtained for x0 = 100 and x1 = 200.
Can the model be re-parameterised to get results comparable to those obtained for
data centered around x = 0?

ahttps://emcee.readthedocs.io
bhttps://iminuit.readthedocs.io

3 Overfitting and underfitting

We examined in section 2 how to identify the best parameters θ̂θθ of a model and how to estimate
the associated uncertainties σσσθ. However, we have overlooked a key question: what model
should we propose for the data? How many free parameters are relevant?

For npts measurement points, {xi, yi, σi}, we could naively propose a polynomial model with npts

parameters. By implementing a least-squares method, we could then obtain a model passing
perfectly through each of the points, i.e. a best-fit model yielding a null χ2. But in this case,
what use would measurement uncertainties be? Furthermore, the relevance of such a model in
terms of interpolation between measurement points and extrapolation beyond them would be
highly debatable.

In this section, we discuss how to determine whether a model f(x; θ̂θθ), whose parameters have
been optimized to best fit a dataset, is a “good” model. This way, we can determine whether
the number of parameters employed is appropriate. The discussion applies more naturally to
frequentist approaches. Note, however, that the notions discussed here can be extended to the
Bayesian formalism.

3.1 Goodness of fit

The suitability of a model is linked to the question of the expected value for the statistical
estimator, in this case the χ2. If the model “passes through the error bars”, then the ratios
(yi−f(xi; θ̂θθ))

2/σ2
i are of the order of 1 and the χ2, which is the sum of these ratios, is of the order

of npts. In practice, we need to penalize the χ2 estimate for the dimension of the parameter
space, i.e. determine the number of truly independent terms in the sum. The number of degrees
of freedom (d.o.f. or n.d.f.) is defined as ν = npts − npar, where npar is the number of free
parameters. It can be shown that, if the data points are a realization of the proposed model,
the value of χ2 tends towards ν ±

√
2ν for a large number of points.

A model with a reduced χ2, χ2/ν, of the order of 1 ±
√

2/ν could therefore be considered
satisfactory. A model with a reduced χ2 close to zero would be “too good to be true”, and
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a model with a reduced χ2 greater than say 2 would not “pass through the error bars”. In
practice, a low χ2 value corresponds either to overfitting, i.e. too many free parameters, or to
overestimating the uncertainties of the measurement points. A large χ2 value corresponds in
practice either to an underfitting, i.e. an overly simple model, or to an underestimation of the
uncertainties on the measurement points.

A more quantitative goodness-of-fit estimator than the reduced χ2 can be determined based on
the expected distribution of the χ2. If the measurement points are a Gaussian realization of
the model, then for a number ν of degrees of freedom the χ2 follows the PDF:

P(X = x) =
xν/2−1 exp(−x/2)

2ν/2Γ(ν/2)
, (26)

where Γ is the gamma function. The integral of the PDF above the obtained value χ2
0, i.e.

the SF of X evaluated in χ2
0 provides the p-value: p = Sχ2(χ2

0, ν). If the measurements are a
realization of the model, the p-value follows a uniform distribution between 0 and 1. In practice,
for a given dataset, the fit is usually considered “correct” if the p-value lies between 10% and
90%. The question of underfitting arises for a p-value below 10% and overfitting for a p-value
above 90%.

Note 8. The p-value for the χ2 distribution can be estimated in Python using the functions
stats.chi2.sf(chi2, n.d.f.) from scipy in Python or TMath::Prob(chi2, n.d.f.) in
the C/C++ version of ROOT.

Note 9. The uniform distribution of the p-value can be used to adjust the thresholds to be
considered for overfitting and underfitting when fitting models to multiple datasets. So, if you
run 100 fits in a row, you should not be surprised to get p-values of the order of 1% or 99% if
the datasets are a realization of the tested model.

Note that the notion of a “good” model is somewhat misleading. By definition, the estimation
of the p-value answers the question: with what confidence level can we reject the observation
of a χ2 value at least as high as the one obtained? By negation, we consider in practice that,
for a “good” model, the χ2 value obtained is far from being rejected.

3.2 Model rejection and statistical significance

We can compare the 10% and 90% thresholds discussed earlier with the number of Gaussian
standard deviations, as shown in figure 2. For Z = x−µ

σ in equation (11), the integral of the
distribution beyond Zσ is equal to

p = erfc(Z/
√
2), (27)

or p ≈ 5% beyond 2σ.

The equation (27) introduces the notion of statistical significance, Z, expressed as the number of
Gaussian standard deviations or the number of σ. This notion is frequently used in our scientific
fields to qualify the probability that a signal does or does not originate from background noise.
Assuming that the background noise is Gaussian distributed around a mean µ with a standard
deviation σ, then the p-value p is the probability of obtaining, through statistical fluctuations,
a signal at least Zσ away from the mean noise value (two-sided interval test). If a strictly
positive signal is expected, the probability of obtaining a signal greater than µ + Zσ from the
background noise is p/2 (one-sided interval test).
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Given the number of experiments carried out and the number of configurations tested to discover
e.g. the Higgs boson or gravitational waves, a p-value of the order of one percent is not sufficient
to ensure a discovery.7 We usually speak of a hint for a significance above 3σ or p ≲ 0.3%, an
evidence above 4σ or p ≲ 0.6 × 10−4 and detection or discovery (first detection) above 5σ or
p ≲ 0.6× 10−6.

Note 10. The functions special.erfcinv in scipy and TMath::ErfcInv in ROOT can be used
to convert a p-value into a Gaussian significance, Z, by inverting the equation (27).

3.3 Choosing the model

Let’s assume that we have found a model resulting in an acceptable fit to the data, i.e. one for
which the χ2 p-value is between 10% and 90%. Couldn’t a more complex model (e.g. linear
model instead of constant) provide an even better fit?

If the simpler H0 model is nested within the more complex H1 model (e.g. the constant model
is nested within the linear, which is nested within the quadratic), the χ2 value obtained for H1

is necessarily lower than that obtained for H0: χ
2
1 ≤ χ2

0. However, the number of parameters of
H1, npar, 1, is greater than that of H0, npar, 0, so that ν1 < ν0. The two effects may counteract
each other when estimating the p-values for H0 and H1, so the model complexity needed to
reproduce the data may be hard to determine.

Wilks’ theorem provides an objective selection criterion for frequentist analyses (likelihood ratio
test or χ2 difference test). If the parameter space θθθ0 of dimension npar, 0 is included in the larger
space θθθ1 of dimension npar, 1, i.e. if H0 and H1 are nested, then the difference of the best χ2

in the spaces θθθ0 and θθθ1, ∆χ2 = χ2
0 − χ2

1, follows a χ2 distribution with ∆ν = npar, 1 − npar, 0

degrees of freedom.

We can therefore evaluate p = Sχ2(∆χ2,∆ν) to estimate the probability that the data are better
reproduced by H1 than by H0. This p-value can be considered as the degree of rejection of the
H0 hypothesis in favor of H1.

8

Note 11. An interesting mathematical property can be used to quickly determine the rejection
significance of a simple model in favor of one with a single additional parameter (npar, 1 =
npar, 0 + 1). Indeed, by inverting the equation (27), the significance simplifies as follows:

Z =
√
2 erfc(−1)

(
Sχ2(∆χ2,∆ν)

)
=
√
∆χ2 for ∆ν = 1 (28)

The threshold number of Zσ used in practice to parameterize a background model is often less
restrictive than that used to claim the detection of a new effect. For such background modeling,
we recommend adopting the more complex model if it is favored over the simpler model by 2σ
or 3σ.

7Such an assertion illustrates the main Bayesian criticism of frequentist approaches: p-values behave as prob-
abilities only within a restricted framework, and do not necessarily take into account all the prior measurements
made, e.g. by other experiments. In the frequentist literature, one can find the terms pre-trial and post-trial
p-values, which allow the authors to distinguish between taking into account or not the fact that multiple tests
have been run for several configurations. Taking into account this “look-elsewhere effect” addresses the problem
of multiple comparisons, without requiring the full Bayesian formalism.

8A test statistic similar to the likelihood ratio exists in Bayesian analysis: the Bayes factor.

14



3.4 Model validation

The statistical approaches described here can be used to quantitatively assess the ability of
models to reproduce data. However, it may be that the type of models evaluated is not appro-
priate, or that the data present one or more irregularities that are poorly taken into account by
Gaussian uncertainties (outliers).

One should always make a point of evaluating the distance between the best-fit model f(x, θ̂θθ)
and the data {xi, yi, σi} by plotting the residuals, yi − f(xi, θ̂θθ), and normalized residuals or
pulls,

(
yi − f(xi, θ̂θθ)

)
/σi, as a function of xi.

The pulls are often used to identify the points or group of points contributing most to the
χ2 value. These normalized residuals follow a standard normal distribution if the data are a
realization of the model. The points must also be randomly distributed on either side of the
model. The residuals can be used to assess large absolute deviations between model and data.
Comparing residuals and pulls often helps identifying poorly estimated uncertainties.

4 Propagation of uncertainties and model parameterization

We now know how to determine whether a model satisfactorily matches a data set, using a test
statistic such as χ2 in frequentist analysis. For a model fitting well the data, we are also able to
determine the best parameters θ̂θθ and their covariance matrix Vθθθ, which contains the square of
the uncertainties on its diagonal and the correlation terms outside. This representation, using
the first two moments of θθθ, fully defines the Gaussian likelihood. Using the first two moments
is merely a practical approximation to the multi-dimensional posterior that would be obtained
in Bayesian analysis.9

Suppose the physical quantity of interest Ω is a function of θθθ, Ω = g(θθθ). We wish to determine
the PDF of Ω from the multi-dimensional distribution of θθθ. In Bayesian analysis, we often keep
trace of the path followed by Monte Carlo Markov chains along θθθ, so that the distribution of Ω
can easily be reconstructed by evaluating the function g at each point of the parameter space
explored by the chains. In frequentist analysis, the PDF of Ω is approximated by a Gaussian
centered on g(θ̂θθ) and of variance determined by the propagation of uncertainties.

4.1 Propagation of uncertainties

The variance of the variable Ω can be determined using a linearization around Ω̂ = g({θ̂i}):

Ω ≈ g({θ̂i}) +
∑
i

∂g

∂θi

∣∣∣∣∣
θ̂i

(
θi − θ̂i

)
(29)

This is a strict equality if g is a linear function of {θi}. Otherwise, the Taylor expansion
in equation (29) is based on small variations around {θ̂i}, i.e. small uncertainties on these

9For flat priors, this simplification is akin to the so-called Laplace approximation in Bayesian analysis.
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parameters. The above equation can be written as

Ω− Ω̂ ≈
∑
i

∂g

∂θi

∣∣∣∣∣
θ̂i

(
θi − θ̂i

)
, (30)

By squaring both sides and averaging over the {θi}, we obtain the following formula.

Propagation of uncertainties

The variance of the variable Ω = g
(
{θi}

)
, linearized around the {θ̂i}, is

σ2
Ω =

∑
i

∂g

∂θi

∣∣∣∣2
θ̂θθ

σ2
θi
+ 2

∑
i>j

∂g

∂θi

∣∣∣∣
θ̂θθ

∂g

∂θj

∣∣∣∣
θ̂θθ

ρijσθiσθj (31)

Vii = σ2
θi
: variance or squared uncertainty of θi;

Vij = ρijσθiσθj : covariance of {θi}.

This equation is homogeneous: σ2
θi

has the same dimension as (∂θi)
2 and σ2

Ω has the same

dimension as (∂g)2. We have established the propagation formula for a one-dimensional variable
Ω, but the reasoning can easily be generalized to ΩΩΩ = {Ωk}. Uncertainty propagation, involving

the Jacobian matrix J =
[
∂Ωk
∂θi

]
, then reduces to VΩΩΩ = JVθθθJ

⊤.

Note 12. The propagate method in the Python library jacobi can easily be used to evaluate
the above equation numerically.10

Let’s study two practical cases analytically:

• Weighted sum: Ω =
∑

i pi × θi where pi are constant numerical values (no associated
uncertainty). We then obtain:

σ2
Ω =

∑
i

p2iσ
2
θi

(32)

If we average quantities with the same uncertainty, i.e. σθi = σ and pi = 1/npts, we find
σΩ = σ/

√
npts, as in equation (25).

• Weighted product: Ω =
∏

i θ
pi
i where the pi are constant numerical values (no associated

uncertainty). We then obtain:

σ2
Ω =

∑
i

pi × θpi−1
i ×

∏
j ̸=i

θ
pj
j

2

σ2
θi

i.e.
(σΩ
Ω

)2
=
∑
i

p2i

(
σθi
θi

)2

(33)

The latter expression shows that it is often useful to push the analytical calculation a
little further in order to rewrite the solution in a simple way.

10See https://iminuit.readthedocs.io/en/stable/notebooks/error_bands.html.
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4.2 Minimizing covariance between model parameters

Let’s now apply the uncertainty propagation formula in equation (31) to our initial problem.
We have been able to determine the parameters θθθ and the associated covariance matrix, so that
the function f(x; θ̂θθ) best fits the data {xi, yi, σi}. The model can be seen as a function of the
parameters, with an uncertainty

σ2
f =

∑
i

(
∂f

∂θi

)2

σ2
θi
+ 2

∑
i>j

∂f

∂θi

∂f

∂θj
ρijσθiσθj (34)

Just as the model f depends on the variable x, the model uncertainty σf depends on this same
variable. The constraints on the model therefore depend on where it is evaluated, with smaller
uncertainties in the range covered by the data and larger uncertainties outside the data range.

Let’s illustrate this point with a linear model, f(x; {a, b}) = a + bx. The uncertainty on the
model induced by the uncertainties on {a, b} is then

σ2
f = σ2

a + x2σ2
b + 2xρabσaσb (35)

This uncertainty is minimal for x = x0 such that ∂σ2
f/∂x = 0, i.e x0 = −ρabσa/σb. We can

then rewrite the model to minimize the correlation between its parameters, i.e. g(x; {a0, b0}) =
a0 + b0(x− x0) with b0 = b and a0 = a+ bx0, the value x0 being fixed. The covariance between
a0 and b0 is then

Cov(a0, b0) = Cov(a+ bx0, b)

= Cov(a, b) + x0Cov(b, b)

= ρabσaσb + x0σ
2
b

= 0 (36)

The value x0 is called the decorrelation point or pivot point. For a wide class of models (e.g.
linear, exponential, power law), we can find a point of strict decorrelation, i.e. such that the
covariance between parameters is strictly zero. This point is generally located in the middle of
the range covered by the {xi}.

From an analytical point of view, expressing the model as f(x) = a+ bx or g(x) = a0 + b0(x−
x0) may seem equivalent. However, let’s not forget that the propagation of uncertainties in
equation (31) is derived from a Taylor expansion, which is all the more valid (for a non-linear
model) the smaller the uncertainties. From a numerical point of view, the parameter space is
easier to explore for decorrelated parameters, which speeds up the fitting procedure. Whenever
possible, therefore, we should parametrize the model in a way adapted to the data, i.e. so as to
minimize correlations between parameters.
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5 Conclusion

This document provides an introduction to the inference methods used in the scientific themes
covered by the NPAC master’s program. Comparing a model to a data set provides probabilistic
inferences about the validity of the model and the values of its parameters. The most appropriate
framework for inferring parameters and their credibility intervals is the Bayesian formalism (see
equation (12)). In the latter, the probability distribution functions of parameters are determined
by means of integration, a process known as marginalization. In the frequentist formalism, which
only covers the likelihood term introduced in the Bayesian approach, probability is interpreted as
the frequency of the outcome of a repeated experiment. The frequentist approach is therefore
particularly well suited to determining the statistical significance of a signal. In the case of
Gaussian distributions, likelihood maximization adopted in the frequentist formalism reduces
to a least-squares approach, in which one minimizes the χ2. The latter is the sum of the
squared differences between model and data weighted by the squared uncertainties on the data
(see equation (21)). Where a Bayesian approach integrates, a frequentist approach finds the
zero-derivative point and estimates uncertainties by profiling or second-derivative calculation
around this point. The uncertainties can be propagated naturally in the Bayesian approach,
while the formula for propagating uncertainties in equation (31) can be used in the frequentist
approach. In both cases, the models to be fitted to the data are better formulated by minimizing
correlations between their parameters. When comparing results from multiple experiments,
frequentist methods provide a natural framework for estimating the degree of tension between
results, while Bayesian methods allow us to properly combine information and determine the
degree of credibility of parameter values.

Although they answer different questions, frequentist and Bayesian approaches often give sim-
ilar results. In the simplest cases, they can be implemented analytically, and more generally
numerically using well-established libraries. Interested readers are encouraged to practice both
approaches in order to grasp their limitations and interests. The bibliography at the end of this
document will provide a deeper insight into the foundations and methods of statistical inference.

Numerical exercises

Exercise 5. Fitting a model to a histogram

• Create a jupyter notebook called Histogram Analysis.

• Using the introduction of the Cost Functions tutorial from iminuit, generate a test
data set, comprising 1000 background events distributed according to an exponential
of slope 1 and 100 signal events distributed according to a Gaussian of mean µ = 1
and width σ = 0.1.

• The Maximum-likelihood fits/Binned fit sub-section of this tutorial illustrates how to
analyze binned data with a Poissonian maximum-likelihood method. Using this
method, fit a signal + background model to the generated data.

• Perform a similar fit using a least-squares method (what uncertainty should be used
for the points?). Compare with results obtained using the binned analysis. Evaluate
the quality of the fit using the χ2 and the associated p-value.
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• Plot residuals and pulls for both fits, using the tutorial RooFit tutorials/109:
chi-square residuals and pulls as a guide.

Exercise 6. Statistical significance

• Create a sub-section of the jupyter notebook named Statistical significance.

• Using the method of least squares, fit to the previous histogram:

– A model H0 described by an exponential with two free parameters. Determine
the χ2 obtained, i.e. χ2

0.

– A model H1 described by an exponential with two free parameters plus a
Gaussian of free amplitude but with mean and width fixed at µ = 1 and
σ = 0.1. Determine the χ2 obtained, i.e. χ2

1.

• By how many degrees of freedom do H0 and H1 differ? Are they nested? Using the
equation (27), determine the statistical significance at which the signal is detected.

• Perform a similar fit for a model H2 described by an exponential with two free
parameters plus a Gaussian with three free parameters. At which significance level
is this model preferred to H0? to H1?

Exercise 7. Model error band

• Create a jupyter notebook named Error band.

• As in Exercise 1, generate a data set following a linear model.

• Fit a linear model with a least-squares method to this data set.

• Using the tutorial How to draw error bands from iminuit, plot the best model and
its 68% confidence interval.

• As in Exercise 1, fit a linear model to the data in a Bayesian framework.

• For a given value of x, plot the distribution of expected model values
y = f(x; {a,b}). Return the quantiles at 16% and 84% of this distribution.

• Plot the 68% credibility interval of the model and compare it with the 68%
confidence interval.

Exercise 8. Bonus

• Create a jupyter notebook called Ultimate Analysis.

• Generate a data set as in Exercise 5.

• Build an analysis to identify the best model and its parameters, determine the
goodness of fit and residuals, the degree of statistical significance of the signal and
the error band on the model.
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