

| Course Title:              | Astroparticles and Cosmology                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Number of hours/semester:  | 60h, 1 <sup>st</sup> Semester                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Number of ECTS:            | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Lecture outline, contents: | This course provides an introduction to cosmology and astroparticle physics. The lectures and tutorials are organized into three parts.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                            | The principles of cosmology and high-energy astrophysics are<br>covered in the first chapter. We provide a formal account of<br>the expanding universe that includes the<br>Friedmann-Lemaître-Robertson-Walker metric, cosmological<br>parameters (with a phenomenological introduction to dark<br>matter and dark energy), the Friedmann equations and their<br>solutions. Particular emphasis is placed on the definition of<br>redshift and cosmological distances. We then introduce the<br>thermal history of the Universe up to the present day, and<br>discuss cosmic energy densities associated with known states<br>of matter and radiation. After examining the distribution of<br>baryons in the local Universe, we give a general overview of<br>the non-thermal astrophysical sources that populate the<br>cosmic web and our galaxy. |
|                            | The second chapter addresses observables in cosmology and<br>astroparticle physics. We discuss the classical cosmological<br>probes (type Ia supernovae, baryonic acoustic oscillations,<br>cosmic microwave background) that enable us to measure<br>cosmological parameters and test the properties of dark<br>matter and dark energy. We describe the other<br>electromagnetic and hadronic backgrounds that populate the<br>cosmos, and explore their origins (star formation, accretion,<br>ejection). Particular emphasis is placed on the cosmic<br>backgrounds at the highest energies (gamma rays, neutrinos,<br>cosmic rays), and on the physical processes underlying their<br>production (acceleration, transport, radiative processes).                                                                                                 |

The final chapter offers openings on hot topics in

|                                        | astroparticle physics and cosmology: the growth of matter<br>overdensities, primordial inflation, modified gravity theories,<br>indirect searches for dark matter and signatures of physics<br>beyond the Standard Model. |
|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pedagogical methods:                   | Lectures and tutorials                                                                                                                                                                                                    |
| Prerequisites:                         | Astronomy 101. Special Relativity. Technical knowledge of General Relativity is not required to follow the lectures, but is recommended.                                                                                  |
| Modalities of knowledge<br>assessment: | Written examination at mid-term and at the end of the semester for the first session. Oral examination for second session (second-session maximum grade is limited to $10/20$ ).                                          |
| Bibliography                           | 1. Malcolm Longair, "High Energy Astrophysics", Cambridge                                                                                                                                                                 |
|                                        | 2. James Rich, "Fundamentals of Cosmology", Springer                                                                                                                                                                      |
|                                        | 3. Jean-Philippe Uzan & Patrick Peter, "Cosmologie primordiale", Belin                                                                                                                                                    |
|                                        | 4. John Peacock, "Cosmological Physics", Cambridge                                                                                                                                                                        |